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A recent review of common modelling practices conducted during the Workshop 
“Shaping long-term baselines with Computable General Equilibrium (CGE) 
models” held at OECD in January 2018 showed that models include different 
assumptions on changes to the production function along their dynamic baselines. 
These changes imply shifts in sectoral compositions for the projected economies (i.e. 
structural change). This paper reviews the assumptions made by 24 modeling teams 
about supply-side drivers of structural change: primary factor efficiency and 
changes in input-output structures of the production function over time. We 
critically review various methodologies, identifying state-of-the-art practices, and 
we propose simple guidelines, particularly focusing on consistency between data 
sources and models. The review highlights that most models take into account 
structural change to some extent. However, more effort is needed in modelling 
projected changes in input-output structures. Furthermore, this review is helpful 
for understanding the functioning of dynamic CGE models and in assisting 
dynamic CGE modelers in building their own baselines. 

JEL codes: C67, C69, D57, D58, L16. 

Keywords: Computable general equilibrium models; Long-term economic 
projections;  Structural change;  Supply-side;  Input-output.  

 
a Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 2 
rue André Pascal, Paris, France (e-mail: jean.chateau@oecd.org).  
b Center for Global Trade Analysis, Purdue University, 403 W. State Street, West Lafayette, IN 47907, 
U.S.A. (e-mail: ecorong@purdue.edu). 
c Organisation for Economic Co-operation and Development (OECD), Environment Directorate , 2 
rue André Pascal, Paris, France (e-mail: elisa.lanzi@oecd.org). 
d Wageningen Economic Research, Prinses Beatrixlaan 582, 2595 BM The Hague, The Netherlands 

(e-mail: caitlyn.carrico@wur.nl). 
e Centre d'Études Prospectives et d'Informations Internationales (CEPII), 20 avenue de Ségur, TSA 
10726, 75334 Paris cedex 07, France (e-mail: jean.foure@cepii.fr). 
f International Food Policy Research Institute (IFPRI), 1201 Eye St, NW 
Washington, DC 20005-3915 USA (e-mail: d.laborde@cgiar.org). 

mailto:jean.chateau@oecd.org
mailto:ecorong@purdue.edu
mailto:eliza.lanzi@oecd.org
mailto:d.laborde@cgiar.org


Journal of Global Economic Analysis, Volume 5 (2020), No. 1, pp. 109-161. 

 
 

110 
 

1. Introduction 

Economic growth, whether driven by primary factor growth (e.g., labor, 
capital) or overall technical progress, is historically characterized by changes in 
the sectoral composition of economies, i.e. structural change. Many factors explain 
why growth rates are not uniform across economic sectors and commodities. On 
the demand-side, non-homothetic preferences is a first explanation. These 
preferences imply that, when income grows, households spend proportionately 
less on necessary goods, such as food products, and more on services. The second 
explanation for structural change is the varying degree of technological progress 
across sectors, both during economic transition (Duarte and Restuccia, 2010) and 
in the long run (Ngai and Pissarides, 2007). This includes efficiency differences 
across inputs to production. For simplicity, in this paper we will refer to this as 
supply-side structural change. A third explanation is that the world economy 
relies on international trade, and patterns of specialization in trade contribute to 
uneven rates of output growth and commodity demand across sectors.  

The calibration process of macroeconomic projections—Gross Domestic 
Product (GDP), in particular—in the construction of a Computable General 
Equilibrium (CGE) model’s baseline scenario does not imply that all goods 
produced grow equally. Indeed many CGE models implement endogenous 
structural change in the dynamic calibration process. This can be done by 
incorporating non-homothetic preferences, differentiated cost structure across 
sectors linked with non-uniform evolution of commodity prices, or exogenous 
assumptions on efficiency improvements of production factors. 

The purpose of this paper is to describe how assumptions regarding supply-
side structural change (i.e. as induced by temporal shifts in the production 
function) drive baseline scenarios across different CGE models. The paper 
provides a synthesis and justification, whenever possible, of the various modeling 
choices concerning the calibration of supply-side structural change, on the basis of 
the information provided by the modeling teams that have attended the GTAP-
OECD workshop on “Shaping long-term baselines with CGE Models" (January 2018). 
Specifically, we consider three main questions:  

(i) what are the main characteristic of supply-side structural change in 
CGE models that are necessary for forward-looking projections?  

(ii) how would alternative supply-side structural change drivers affect 
baseline economic projections? 

(iii) what are the best practices to calibrate these desired projections?  

This paper does not consider structural change associated with the shifts in final 
demand patterns driven by changing income per capita; as this is discussed in Ho 
et al. (2020) of this special issue (see also Święcki, 2017). Similarly, this paper does 
not consider underlying macro-economic projections and changes in economic 
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structures resulting from changes in primary factors, nor international trade 
assumptions. These are discussed respectively in Fouré et al. (2020) and Bekkers 
et al. (2020) in this special issue. 

This paper provides an overview of how prominent global CGE modelling 
teams calibrate supply-side structural change in their CGE baselines. It does so by 
combining detailed explanations of modelling methods and simple illustrative 
simulations with a critical review of the existing modelling literature. Specifically 
it reviews the baseline construction methods of the 24 CGE models that were 
represented at the aforementioned GTAP-OECD workshop.  

The paper shows that calibrating production parameters for both primary 
factors and intermediate inputs, leads to more realistic baselines in terms of the 
future sectoral composition of economies. While most models attempt, to some 
extent, to take into account structural change in their baseline, more effort is 
needed in modelling improved projected changes in firms’ intermediate demands 
toward more services as well as possible further developments of new existing 
technologies, such as electric vehicles. 

The remainder of this paper is structured as follows. Section 2 introduces the 
notion and importance of supply-side structural change, and reviews existing 
calibration approaches. The following two sections then present more precise 
aspects of calibration: Section 3 focuses on the role of primary factor efficiency and 
total factor productivity in supply-side calibration, while Section 4 discusses 
desired projected changes in the composition of intermediate demands. Section 5 
concludes. 

2. Calibrating supply-side drivers of structural change in CGE baseline: General 
overview  

2.1 Simple principle of baseline calibration in the one sector neoclassical growth model 

The main purpose of dynamic computable general equilibrium (CGE) models 
is to develop and assess various scenarios of the future of a single-country or the 
global economy. They generally rely on the development of one or more baseline 
scenarios that are used as a reference point to assess the costs and benefits of 
alternative policy scenarios. 

CGE models belong to the class of neoclassical growth models. Therefore, the 
basic set up of their baseline development can be traced back to key assumptions 
of economic growth theory. Following Barro and Sala-i-Martin (2004), the key 
assumption of the neoclassical (or Solow-Swan) growth model is a production 
function F (equation 1.) that assumes constant returns to scale, diminishing returns 
to each primary factor, physical capital (K) and labor (L), as well as some positive 
and smooth elasticity of substitution between these factors.  

( ), ,;t t t t L t t KY TFP F L K =          (1) 
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where Y is the flow of output produced or GDP at time t, TFP is Total Factor 

Productivity, K and L are capital and labor efficiency, respectively. 
This GDP equation is combined with a constant-saving-rate rule to generate an 

extremely simple general-equilibrium model. This simple model has the 
remarkable faculty to reproduce stylized facts such as “conditional convergence” 
of the economies (Barro and Sala-i-Martin 2004). If one adds to primary factors 
some exogenous technical progress (TFP in equation 1.), that guarantee long run 
growth of GDP per capita, the model also reproduces Kaldor stylized facts (1961).  

CGE baselines generally target some projected GDP by calibrating one of the 
three exogenous drivers described above: capital efficiency, labor efficiency or 
TFP, or some combination thereof. However, since there are three potential 
calibration variables and one single target (the GDP), there are two degrees of 
freedom to calibrate another desired characteristic of the baseline. For example, 
one can calibrate annual TFP to match a desired projection of GDP, while using 
capital efficiency to target some path for the ratio of efficient capital (capital times 
its efficiency) to efficient labor (labor times its efficiency)—some times referred to 
as the balanced-growth assumption.  

Therefore, the baseline calibration process of a dynamic general equilibrium 
model consist of: (i) defining some desired targets in the future, (ii) choosing 
parameters to use for the calibration (generally a parameter that has a connection 
to the target); and (iii) checking that other characteristics of the resulting baseline 
are not unrealistic. It is important to note that this last step is not to be neglected. 
For example it is possible to calibrate GDP by adjusting only the efficiency of 
capital in equation 1. While this could make sense since capital efficiency is one 
driver of growth, within the Solow-Swan model this would result in a permanent 
increase of the marginal productivity of capital, which is not consistent with any 
long-run stylized fact. This is why generally labor efficiency is the chosen 
parameter used to target GDP. 

2.2 The complexity of baseline calibration in sectoral CGE models 

While CGE models borrow some characteristics of the dynamics of a one sector 
growth model, they are much more complex as they describe the functioning of 
numerous commodity markets and sectors of the economy, they include final 
demand systems as well as the input-output structure of each sector as well as 
linkages through international trade. 

For CGE models, the baseline calibration process does not only consist in 
calibrating a macroeconomic scenario (GDP, employment, capital accumulation, 
etc.) as described in Fouré et al. (2020). Indeed, structural change (i.e. shifts in the 
sectoral composition of economies and in costs structure) also needs to be 
calibrated. Accounting for these shifts in the construction of a CGE baseline is 
important for comprehensively projecting the future structure of an economy. 
Further, realistic projections of sectoral composition can be critical in 
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counterfactual analysis (e.g. model simulations used to assess economic impacts 
of policies relative to the baseline). For instance, imposing a tax on polluting 
activities would not have the same impact on a country characterized by a large 
share of heavy industries as it would on a country characterized by a large share 
of financial activities. 

Formally, in a CGE framework, the production structure is now more complex 
than in the one sector model. Equation 1 is then replaced by the following set of 
transformation functions (or production possibilities frontier) for each sector “s”:  

 
1, , , , , , ,

1 1 1 1

( , , , , , , , , , ,

, , ) 0, , ,

s t j t s t t t L t t K t t T t t NR

j j e ej ej

F t Y Y TFP L K T NR

ID ID e e

   

   

   

    =
 (2) 

where Y1,…Yj stands for the outputs 1,..,j of sector s. For the sake of simplicity in 
exposition of determinants of structural change, two kinds of inputs are 
distinguished:  

1) primary factors of production, which includes capital stocks “K”, labor 
endowments “L”, land “T”, and natural resources “NR” and,  

2) intermediate demands “ID” for various commodities “j” (e.g. 
commodities, crops, manufacturing goods,…) and energy carriers “e” (that 
are subset of the commodities j but are distinguished for illustrative 
purpose). 

Moreover, we add to these inputs the efficiency with which they are used: TFPs 

is the exogenous Total Factor Productivity of sector s, and  are input-specific 
efficiency factors. In this paper, the so-called supply-side structural change is 
considered as deriving from changes in production technology across economic 
sectors. In this context, technological change can be seen as the result of any change 

across period “t” in the efficiency variables  of the primary factors (K, L, T, NR), 
including changes in technical progress (TFP) and in autonomous efficiency of 

production factors and input use of a commodity i (i). Any change in these 
supply-side variables will imply (i) changes in demand patterns for both final and 
intermediate demands, and (ii) changes in production modes. At the same time, at 
the regional level, the domestic production of each good is also likely to grow 
asymmetrically in order to fit with demand changes resulting from trade 
specialization. 

This increased complexity of the modelling framework means that the 
calibration process can target much more than GDP, such as the labor income 
share, energy intensity, the share of services in value added or crop yields. 
However, it is important to keep in mind Tinbergen’s principle that one calibrated 
variable should be dedicated to one desired target. Indeed, the calibration now 
involves a complex procedure, which includes: (i) the choice of the main desired 
characteristics (i.e. targets) a baseline should reproduce, since not everything can 
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be represented, (ii) the choice of the potential calibration variable for each target, 
and (iii) a check that the resulting baseline from the CGE model has no unpleasant 
characteristics. If the latest fails, then step (ii) should be done again.  

2.3 The importance of targeting supply-side structural change: illustration with a simple 
simulation 

In the previous section we showed that in CGE models efficiency parameters 
for inputs in the production function provide several degrees of freedom to target 
baseline characteristics in CGE models. Among these desired characteristics, the 
baseline should project realistic changes in sectoral composition of the economies 
and in cost structures (supply side structural change).  

Changes in the production function can cause shifts in economic structure 
through several mechanisms, including changes in relative input prices. One main 
characteristic of structural change that a CGE baseline should project is the 
increasing share of services in total value added. Indeed, Information and 
Communications Technologies (ICT) have paved the way for simpler and easier 
production methods that are cost effective and faster. The services activity is 
currently one of the leading economic sectors due to increased demand for service 
and leisure industries, among others. This also reflects an intensification of 
services inputs across all industries, resulting from the ICT revolution (Jorgenson 
and Vu, 2016) and intensification of research and development (R&D) expenses. 
Targeting this intensification of services input in manufacturing or in final 
demand is critical for projecting a realistic future sectoral composition of GDP and 
output cost structures. Since these processes are not endogenously modeled, the 
resulting productivity growth needs to be exogenously calibrated by intensifying 
services input in manufacturing (or in final demand, see Ho et al., 2020).  

To illustrate the importance of calibrating supply-side structural change, we 
run a “naïve baseline”, using the OECD ENV-Linkages model.1 In this baseline, we 
only introduce one assumption on the supply-side: the economy-wide efficiency of 
labor adjusts from 2011 to 2050 to match GDP projections from OECD (2019); no 
other changes in primary factor and intermediate-demand efficiencies are 
assumed. Employment and capital accumulation are also taken from the same set 
of macro-economic projections. On the demand-side, assumptions on preference 
convergence are maintained such that the share of final demand for services 
increases (as discussed in Ho et al. 2020). 

 
 

 
1 The list of sectors and regions aggregated for this exercice is reported in Table B.1. of the 
appendix. The codes of the ENV-Linkages model version used for this paper as well as 
simulation outputs are available upon request to the corresponding author. 
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 Figure 1 illustrates the conventional growth pattern over the 1980-2015 
historical period that, in both the U.S. and China, higher GDP per capita leads to 
declining shares of agriculture and industry, and a rising share of services. Our 
naïve baseline projects that in the next 35 years, from 2015-2050, income per capita 
will still grow, and China’s standard of living will almost catch-up on the 2015 U.S. 
level, by 2050. However, with no further assumption on structural change, the 
projected structure of the economy in 2050 seems unrealistic: the share of services 
would stay constant in China and even decline a little in the U.S. relative to 2015. 
Moreover, the share of agriculture in total GDP seems to increase again during the 
same period.  

 

 

Figure 1.:Value-added by economic activity and GDP per capita: 1980, 2015 and “naïve 
baseline” projection for 2050 

Notes: Gross value added at basic prices in percentage of GDP and GDP per capita in constant 
2011     USD in PPP terms. The figures shows that an increase in the share of services as living 
standards improve does not occur in a “naïve baseline” projection. 

Source: World Bank Indicator Database for historical years and OECD ENV-Linkages Model for 
projected years. A more detailed table about historical stylized facts is provided in Appendix C. 

Therefore, the construction of the baseline projection of CGE models requires 
calibrating additional parameters of the production function to project a more 
realistic supply-side structural change. The following discussion will review 
common practices of a large set of CGE modelling teams about structural change. 

2.4 Existing modelling strategies to characterize supply side structural change: general 
principles 

This paper reviews the structural change part of the baseline construction of the 
CGE models that were reviewed at the GTAP-OECD workshop on “Shaping long-
term baselines with CGE Models" (January 2018). Out of the 29 models reviewed at 
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the workshop, this paper focuses solely on the 24 CGE models. Tables A.1-A3. in 
the Appendix report the main characteristics of the models reviewed in the paper. 

These are all standard global CGE models where production is implemented as 
a series of nested constant-elasticity-of-substitution (CES) functions that aims to 
capture the substitution and complements across all inputs. They are 
predominantly (recursive) dynamic models with an Armington trade 
specification. In most models (16), capital (new capital only or total capital) is 
allocated across activities using a CET transformation function. However, 8 of 
these models propose an alternative rule for the dynamic allocation of capital, 
using different vintages of capital: installed capital stocks are sticky while new 
capital is freely allocated across sectors so as to equalize rates of returns. Following 
the GTAP-E model (Burniaux and Truong, 2002), most models reviewed bundle 
energy intermediate inputs and combine them directly with primary factors.  

For these standard CGE models where production of each sector is represented 
by nested CES structure, the baseline calibration of the production side consists in 
adjusting parameters of the CES function over time (CES shares, scale parameter 
or input efficiency) to reproduce targets for either input intensity or sector shares 
(i.e. the desired supply-side structural change). Comparing baselines across the 
different modelling teams is therefore easier since model structure and calibration 
methods appear to be similar.  

While adopting a similar modelling framework the modelling teams reviewed 
could be differentiated in two groups regarding the approach they retained for 
their baseline calibration.  

The first group of teams start by defining what should be a realistic scenario 
about future structural change. In other words, they define a set of desirable 
characteristics that the projection should take into account, such as a projection 
about future GDP per capita across countries, the evolution of the share of services, 
the relative prices of manufacturing, etc. Then, the calibration process consists in 
choosing which supply-side variables should be calibrated to best reproduce these 
characteristics. In this context, these modeling teams try to calibrate the size and 
evolution of certain sectors (e.g. agriculture and food; energy production) or 
specific characteristics of the structure of the economy (e.g. trade) based on 
external information. For example, modelling the economics of climate change 
requires a plausible scenario for the future of energy systems which accounts for: 
the “electrification” of the economy, decreasing fossil fuel use, increasing shares 
of renewable electricity (including biomass), and increasing reliance on gas for the 
energy transition. In general, modeling teams rely on external inputs2 to target 
these projected sectoral trends.  

 
2 Some teams adopt a slightly different methodology for some sectors, relying not on 
external projections but on external models: incorporating soft or hard links between their 
CGE model and relevant partial equilibrium model(s). Faehn et al. (2020) in this special 
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The second group of teams adopt the opposite approach. They take some 
exogenous projections about supply side variables, such as TFP, labor efficiency 
by sector, land efficiency, and then check to see if the characteristics of the resulting 
baseline are more or less realistic. This approach has the advantage to facilitate 
comparisons across sectors and countries since the values for calibrated variables 
(efficiencies) are more transparent, and therefore is more adapted to CGE models 
built for more academic analysis. The drawback is that models partly lose the 
ability to target specific trends and therefore are less adapted to more applied 
analysis that need to rely on some specific projected trends. This second approach 
is sometimes refined by some teams, not overviewed in the present paper, which 
adopt an hybrid approach consisting in econometrically estimating certain supply 
side variables to exogenous projections (see next section). 

As presented in Fouré et al. (2020), the two approaches are used in the reviewed 
models to implement their macroeconomic baseline. 20 CGE models (of the 24 for 
which we have information) calibrate efficiency parameters to reproduce 
exogenous trajectories of GDP growth. In contrast, a few teams (only 3) directly 
impose exogenous assumptions on efficiency parameters and leave GDP as 
endogenous. In the first case, the models use specific, endogenously determined 
efficiency improvements to match GDP growth trajectories, whereas, in the second 
case, exogenously set efficiency improvements are implemented. 

Other modelling and baseline calibration practices 

While most common, the standard approach described is not the only one. As 
outlined in Jorgenson et al. (2013), an alternative methodology is to represent 
production processes with more flexible functional forms (such as translog or 
logit) that allow for more complex substitution patterns than the nested CES. 
Taking advantage of this flexibility helps in underkaing econometric estimations 
of the parameters of the production function. This approach is by essence data 
intensive and makes it very difficult to be applied in global models, where 
historical information on production variables for numerous countries appear to 
be almost impossible to obtain.  

Between these two approaches, a third intermediate way could be chosen. 
Dixon and Rimer (2002, 2013) for the MONASH model or, more recently, Britz and 
Roson (2019) for the G-RDEM model, propose a hybrid approach in which 
production still relies on the CES-nesting structure but with an effort to back-cast 
parameter changes, using historical data to project future trends. While this 
approach is promising, proposing a reasonable compromise between empirical 
relevance and theoretical aspects, the fact that these models rely on very model-
specific functional forms makes it difficult to compare them to models relying on 

 
issue review methods for energy projection, while Delzeit et al. (2020) in the same special 
issue provide more details on the linking of CGE and with other models. 
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the standard approach. At last, some of the teams overviewed in this review, 
propose some econometrically estimated relationship for production, but only in 
some parts of the model, such as the energy system for CIRED’s IMACLIM model 
(Waisman et al, 2012).   

3. Calibration of primary factor efficiency 

3.1 The importance of calibrating efficiency parameters across sectors: : an illustration with 
simple simulations 

To illustrate good practices in calibrating efficiency parameters in baseline 
construction, we run four alternative baselines with the ENV-Linkage model. 
These are characterized by alternative assumptions on the drivers of supply-side 
structural change. The full list of scenarios3 is: (1) the “naïve baseline” described in 
section 2.3, where only aggregate labor efficiency is calibrated to match GDP (2) a 
baseline with “adjusted efficiencies of primary factors”, where labor, land and 
capital efficiency are sector-specific and calibrated to match sector productivities, 
(3) a baseline with “adjusted intermediate demands” where intermediate input 
efficiencies are calibrated, and (4) a baseline with “full structural change” that 
combines assumption of scenarios (2) and (3). 

In Figure 2, additional structural change assumptions address the problem of 
incorrectly projected sectoral compositions of value added in the “naïve baseline”. 
Sector-specific factor efficiency adjustments reduce the share of agriculture in 
favor of both industry and services, while the calibration of intermediate demand 
efficiency increases the share of services to the detriment of both agriculture and 
manufacturing goods. 

The baseline with “full supply-side structural change” reported in Figure 2, 
shows a structural change more in line with historical trends as well as with the 
explanation of Baumol (1967) that the sectors with lowest productivity (e.g. 
services and public sector) would see their share in the total economy increase.4 
Since the U.S. economy is already mature, the increase in the share of services from 
2015 to 2050 remains limited, rising only slightly from 72% to 74%. This increase 
may be underestimated, but it is more likely than the decrease to 70%, as shown 
in the “naïve baseline”. For China, the share of services increases from 47% in the 
“naïve baseline” to 59% in the “full structural change” baseline. Given the 

 
3 The details of assumptions on changes in primary factor and intermediate demand 
efficiencies of these baseline scenarios are provided in the Excel file of the supplementary 
materials and summarized in Appendix D. 
4 The purpose of the paper is not to discuss the indicators and projected trends that a 
realistic baseline scenario should reproduce, but to explain how assumptions on primary 
factor efficiency and intermediate demand parameters affect these indicators. Nevertheless 
by sake of realism we add in Appendix C a table about stylized facts compiled from 
historical data for selected countries. 
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predominance of China in world GDP in 2050, this correction has considerable 
importance.  

These simple simulations show that for a developed economy, such as the U.S., 
the intensification of services is a critical assumption, driving the projected 
increase in the services value-added share over time, while the assumption on 
differentiated sectoral labor productivity plays a minor role. On the other hand, 
for an emerging economy, like China, characterized by a lower initial share of 
services, capital accumulation continues vigorously (see Table 1 that presents 
macro-economic indicators for these two countries), and the dynamic of different 
labor efficiencies by sector remains the main channel driving the increase in the 
services value-added share. 

 

  

Figure 2. Adopting supply-side assumptions corrects for declining services shares in the 
naïve baseline in 2050 

  Notes: Gross value added at basic prices in percentage of GDP. 

  Source: OECD ENV-Linkages Model. 

In line with long run stylized facts, the share of wage income in total income 
(reported in column 3) should increase following an increase in livings standards 
for emerging economies like China and be relatively stable for a mature economy 
like the U.S. In the naïve baseline, this is not the case for China, but the assumptions 
on sectoral differences for factors leads to an increasing share of labor income in 
China.  

This steady-state hypothesis for the U.S. is confirmed by the fact that the ration 
of capital to efficient labor (column 7) increases very little in the U.S. between 2011 
to 2050. In contrast, the capital to labor ratio rises steadily over the model horizon 
in regions that are the most dynamic in terms of potential growth. Consider, for 
example, China, where the growth path is still far from balanced and capital 
accumulation remains an important source of its GDP growth. The capital to labor 
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ratio for China rises by a factor of 5 during this same period, relative to a factor of 
only 2.5 in the “naïve baseline”. Indeed, in the “naïve baseline”, the labor 
productivity growth is uniform across sectors, whereas, in the baselines with 
changes in efficiency, the labor productivity growth is more important in 
manufacturing than in services sectors.  

Finally, the last two columns present greenhouse gas (GHG) emissions per 
capita and total primary energy demand (TPED), respectively. By themselves, 
these are not indicators of structural change. Nonetheless, there is a large variation 
in these indicators across the four baselines, each with the same GDP and 
population growth. This variation is indicative of the importance of the supply-
side structural change assumptions for dealing with environmental and energy 
issues.  

Table 1. Relevant macroeconomic indicators in 2050 for four illustrative baselines  

  

Services 
sharea 

Labor 
income 
shareb 

Labor 
productivity 

growth c 

Wage 
growth

d  

Servic
e Price 

e 

Capital 
to labor 

f 
CPI g 

GHGs 
per 

capita 
h 

TPED 
i 

 

% of 
GDP 

% of 
GDP 

Av. annual 
growth rate 

Av. 
annual 
growt
h rate 

Base 1 
in 

2011 

efficien
t units 

Base 1 
in 

2011 

Tonne
s of 
CO2 

eq. per 
capita 

Billion 
tonne
s of 

oil eq. 

People’s Republic of China 

Initial year: 2011 47.5 44.5 - - 1 8.1 1 7.3 2.8 

Naïve baseline 47.4 41.8 4.1 2.8 0.69 19.9 1.15 24.1 11.2 

Only factor prod. changes 53.2 48.6 4.1 3.1 0.84 28.5 1.22 16 7.3 
Only int. demands 
changes 55.1 46.3 4.1 3.0 0.76 30 1.09 14.4 7.9 

Full structural change 58.6 51.7 4.1 3.2 0.88 40.8 1.18 10.8 5.3 

          

United States of America 

Initial year: 2011 72.7 66 - - 1 4.8 1 19 2.3 

Naïve baseline 70.1 65.8 1.5 1.3 0.97 6 1.21 29.6 5.1 

Only factor prod. changes 70.7 64.5 1.5 1.3 0.98 4.3 0.97 19.3 4.6 
Only int. demands 
changes 74.1 66.2 1.5 1.3 0.99 6.4 1.15 22.4 3.2 

Full structural change 73.9 65.6 1.5 1.3 0.96 6 1.02 15.3 3.5 
Notes: a Gross value added of services at basic prices as a percent of GDP.b Gross wage income as a 
percent of GDP. c Average annual growth rate over 2011-2050 of GDP to Employment. d Average 
annual growth rate over 2011-2050 of average wage rate divided by the Consumer Price Index (CPI). 
e Laspeyres Index of Service prices . f Aggregate capital to labor ratio, both expressed in efficiency 
units. g Laspeyres consumer Price Index. h Total greenhouses gases emissions (excluding LULUCF 
emissions) per person, tonnes of CO2 equivalent. i Total primary Energy demand (TPED) in billion 
tonnes of oil equivalent.  

Source: OECD ENV-Linkages Model. 
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3.2 The importance of calibrating efficiency parameters across factors: : an illustration with 
simple simulations 

As explained in section 2.4, among the models reviewed, factor efficiencies are 
used to imply some baseline GDP, the latter being exogenous (and efficiency 
endogenous) or endogenous (and efficiency exogenous). In both cases, the 
modeler still has to choose which factors are impacted by the efficiency 
improvements (i.e., labor-only, non-capital factors5, or all factors) and how these 
efficiency improvements will be differentiated across sectors.  

The previous discussion highlights the importance of the sectoral differences 
for calibrated production parameters to target realistic projected relative sector 
growth (i.e. structural change). However, as discussed in section 2, the second step 
of the calibration is to select a good calibrated variable to do this. In this section, 
we use the GTAP-RD model (Aguiar et al. 2019) to illustrate how different 
productivity (i.e. efficiency) instruments may impact structural change in the 
baseline calibration. For simplicity, we implement a simple baseline that only 
tracks real GDP, population and labor force projections.6 Figure 3 shows the 
variations in the region-wide efficiency improvement variable used to target real 
GDP growth in the baseline, with differences dependent on the four instruments 
used:  

(1) Total factor productivity (TFP); 
(2) Non-capital factor productivity (TFPXCAP) ; 
(3) Labor productivity (LAB); and  
(4) Sector-differentiated labor productivity (LABDIFF) with service-wide 

labor productivity equal to the calibrated economy-wide labor 
productivity and a positive wedge of 1 percent in agriculture and 2 percent 
in manufacturing.7  

 

 
5 This is the default, region-wide technology shifter to target GDP in the GDyn model.  
6 Using GTAP v9.2 Data Base and population, GDP and labor force growth rates based on 
SSP2 projections. We also assume upward sloping supply, with uniform 0.5 supply 
elasticity, for the sector-specific natural resource factor. Sectoral and regional aggregation 
are described in Appendix B. 
7 Based on the assumption that labor productivity takes the form: πl l,a = αl l,a + βl,a l where l 
is an economy-wide parameter calibrated to target GDP. Uniformity implies αl=0 and β=l 
is one for all skill types and activities. Under LABDIFF, we assume that αl =1 percent in 

agriculture and 2 percent in manufacturing, thereby implying that the calibrated l 
represents labor productivity in services and that there is a constant (positive) wedge in 
agriculture and manufacturing relative to services labor productivity. 
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Figure 3. Endogenous efficiency improvements to target GDP growth (in % change) 

      Notes: The diagrams have varying scales. 

      Source: GTAP-RD Model. 

Figure 3 shows that non-capital factor productivity (TFPXCAP) results in the 
largest endogenous change in region-wide efficiency improvements to target 
GDP, followed by either TFP or both versions of labor-biased technical change. 
The TFP results are somewhat mixed—i.e., regional variations exist with TFP 
resulting in the lowest endogenous change in South East Asia, South Asia, and 
MENA, whereas sector-differentiated labor productivity (LABDIFF) results in the 
lowest endogenous change in Oceania, North America, EU, and Latin America. 
Africa shows a slightly different impact, with TFP having a strong initial 
endogenous response, but eventually surpassed by sector-differentiated labor 
productivity (LABDIFF) from the middle to the end of the simulation period. 

To further illustrate the importance of calibrating efficiency parameters across 

factors, we now look at how the different productivity efficiency instruments may 

affect sectoral output changes in Africa. Africa has been retained in this illustrative 

experiment because this region’s productivity increases over time compared to all 

other regions. In general, Figure 4 shows that factor intensities drive a sector’s 
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productivity-induced output impacts. In the extraction sector, non-capital factor 

productivity (TFPXCAP) results in the highest output expansion, followed by TFP, 

given the importance of natural resources in total value added of the sector. Figure 

4 also shows that sectorally-differentiated labor productivity results in the greatest 

impacts on productivity-induced output for agriculture, manufacturing, and the 

services sectors. The choice of productivity efficiency instrument also has 

important implications for sectoral factor shares. Figure 5 shows the changes in 

factor shares, relative to their corresponding 2011 base year shares, by broad 

activity in Africa. In agriculture, labor-biased productivity instruments (LAB and 

LABDIFF) demonstrate the expected outcome that labor shares in agriculture go 

down over time. Labor shares fall even further when we allow for sectoral 

differentiation in labor productivities—i.e., where agriculture has an additional 1 

and 2 p.p. productivity relative to manufacturing and services, respectively. In 

contrast, labor shares in agriculture increase when TFP is used.  

 

  

Figure 4. Output changes in Africa (in % change) 

Notes: The diagrams have varying scales. 

Source: GTAP-RD Model. 

While labor shares in the extraction sector fall regardless of the productivity 
instrument used, we see that the share of natural resources varies significantly. 
Indeed, by 2050, the share of natural resources in the extraction sector’s value 
added increases from 58% under TFP to as high as 74% under the labor-biased 
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productivity instrument. However, the share of natural resources falls to 27% 
when the non-capital productivity instrument (TFPXCAP) is used. For 
manufacturing and services, labor shares fall under TFP but increase slightly when 
implementing the other three productivity instruments. 

As seen above, calibrating through TFP or labor efficiency has consequences on 
the structural change characteristics of the baseline. For a given macroeconomic 
scenario, when calibration of TFP (on value added or gross output) is chosen 
relative to labor efficiency only, firms will face higher real wages. The labor income 
share in total GDP would be higher, and so is the share of services in total value 
added, as the productions of services are more labor intensive. In a closed 
economy context it would also result in an increase of the average price level (or 
total consumer prices). In a global world, for emerging small open economies, with 
low initial level of services and specialized in agriculture and manufacturing 
goods, the price level could sometimes be lower. In conclusion, using labor 
productivity instead of TFP seems more justified when the modeler want to project 
a larger share of services in total value added in the baseline. 
 

 
Figure 5. Factor shares by broad activity for Africa 

Notes: Computed from Gross Value Added at basic prices.  

Source: GTAP-RD Model. 

3.3 General practices and existing modelling strategies for calibrating primary factor 
efficiency 
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No consensus about the efficiency parameter chosen for calibrating production 

Among the models reviewed, there is no consensus on which factors should be 
influenced directly by productivity improvements. However, two different groups 
stand out. The most common approach (adopted by about 2/3 of the models 
reviewed) is to consider labor-efficiency improvements as drivers of GDP per 
capita (for example, ENVISAGE, MIRAGE, or REMIND), whereas another 
significant share of models (1/3) considers an all-factor TFP improvement (among 
them DART, AIM, MAGNET, and G-RDEM). 

Calibrating efficiency parameters across sectors is a common practice 

The majority of the modelling teams reviewed in this paper differentiated 
technical progress (either through TFP or labor efficiency) by sector; this 
assumption is the core of supply-side structural change for the majority of CGE 
baselines.8  

Generally the sectoral differentiation of technological progress is very crude. 
First, only three aggregate sectors (Services, Agriculture and Industries) are 
considered. Second, the productivity wedge is assumed to be uniform across these 
three aggregate sectors in all countries. Examples of this simple sector 
differentiation can be found for MIRAGE-e (Fontagné et al., 2013), MAGNET 
(Woltjer and Kuiper, 2014) and the ENVISAGE model (van der Mensbrugghe, 
2008), where agricultural productivity is exogenously imposed (stemming from an 
estimated convergence mechanism) and a constant 2 percentage point (p.p.) 
productivity growth gap is imposed between manufacturing and services for both 
models. While this approach is relatively easy to implement in any CGE model, it 
is also subject to criticism. First, data envelopment analysis (DEA) methods used 
for estimating agricultural productivity frontiers fail to validate the stylized fact 
that productivity in agriculture may have grown faster than in manufacturing. 
Second, the 2 p.p. growth gap between manufacturing and services, although 
broadly consistent with some past estimates (e.g. Wolff, 1999), plays against the 
recently-observed development of services inputs.  

As explained in Delzeit et al. (2020), some teams, using time-series across 
countries and sectors, derive more differences in productivity improvements 
across more sectors and countries. Examples of this deeper implementation of 
sectoral and regional differences in productivity could be found in the following 

models: G-RDEM, ENGAGE, MIRAGE-AGRODEP, ENV-Linkage, AIM or 
MAGNET. While this helps to fix some issues associated with agriculture-service-

 
8Note that this assumption and the commodity-differentiated Armington elasticities are 
the mechanisms which, in combination, drive the projected convergence in the PPP 
exchange rate in CGE baselines. This follows the Balassa Samuelson effect as explained in 
Obstfeld and Rogoff (2001).  
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manufacturing productivity, distinguishing differences in productivity across 
manufacturing or services sectors will not solve all problems. This is one reason 
why changes in input-output structure should also be considered (as in the 
following section) and why assumptions about the evolution of sector-specific 
labor productivity are important.  

Indeed, some teams add scenarios about the developments in sectoral labor 
productivity. For example, the central scenario in ENV-Linkages reproduces a 
region-specific forecast of the growth rate of average labor productivity. This 
calibration technique is based on sector-specific productivities and region-specific 
gaps between sector productivities and the economy-wide average productivity 
(OECD, 2008). For the sake of realism, an additional convergence assumption is 
introduced which progressively phases out these productivity gaps across 
countries, with a 2% speed of convergence towards the OECD standard of 
productivity differences across sectors (Chateau et al., 2011). Without this latter 
assumption fast growing countries will project high growth but with limited shift 
away from agriculture sectors. 

Various practice for land efficiency and TFP in agriculture production  

While sectoral labor efficiency (or TFP) is the standard instrument retained to 
target the average characteristic of structural change in CGE baselines, most teams 
give a particular attention to agricultural output projections and therefore calibrate 
land efficiency or agriculture TFP to target these. 

Most of the teams obtain estimates for exogenous crop yields, by agricultural 
product and by region, from external sources. Some teams use sector-specific TFP 
in crop-producing sectors to reproduce either crop output or crop yields from the 
external projections (see Delzeit et al., 2020). Others teams directly implement 
external productivity projections for agricultural sectors. For example, in 
MIRAGE-e exogenous TFP is differentiated between crop and livestock 
agriculture. These TFP projections come from a data envelopment analysis model 
which accounts for the impact of land use efficiency on each sector’s TFP 
(Fontagné et al., 2013). However, targeting sectoral TFP instead of a direct land 
efficiency coefficient results in an undesired impact on land demand.  

Other teams impose land efficiency or exogenous yields from crop models 
(DDSAT, LPJML). These estimates may be complemented with projections of 
agriculture production or output from agricultural models (IMPACT, GLOBIOM, 
IMAGE) in order to achieve a more realistic future scenario (see, for example, 
ENV-Linkages in OECD, 2017).  

If future improvements in land yields are not accounted for, implausible 
structural change could occur in the baseline, such as presented in the “naïve 
baseline” of Figure 6. Here, the share of agriculture in total value added increases 
in countries where land supply is abundant (e.g. the U.S.), even if this is 
counterintuitive (Valin et al., 2014). 
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3.4 Gaps in calibrating primary factor efficiency and towards better practices 

Non-calibrated natural resource efficiency in CGE baseline 

Capital efficiency gains, or improvements in the quality and types of machines, 
are generally not considered beyond general improvements in TFP in CGE model 
baselines. Models that have a vintage capital specification allow, to some respect, 
for “endogenous” change in the quality of average capital but it is not used for 
targeting any specific characteristic. This could appear as a weakness of CGE 
baselines as historical evidence shows a non-negligible acceleration in the growth 
rate of embodied technological change at the aggregate level (e.g. quality 
improvement is embodied in capital goods); see, for example, Sakellaris and 
Wilson (2004). However, it is difficult to find numerical evidence of sectoral 
differences in improvements in the quality of capital or of any supply-side 
structural change that such differences would imply. Therefore, a reasonable 
assumption could be to assume no capital efficiency gains, at either the aggregate 
or sectoral level. 

Using the degree of freedom of capital efficiency to target some desired baseline 
characteristics 

But if none of the models reviewed assume some capital efficiency 
improvements, we present now with a simple simulation that it could be a good 
practice to calibrate the average quality of capital to target the aggregate labor 
income share to GDP. We again use the ENV-Linkages model along with the set 
of indicators presented section 2 to examine the extent to which the assumptions 
on aggregate capital efficiency affect supply-side structural change. Starting from 
the baseline with “full structural change”, as described in section 2.3, we add the 
following assumptions on autonomous efficiency of capital:  

• Following Burniaux et al. (1992), we assume aggregate capital efficiency is 

dynamically adjusted to maintain “constant the capital to efficient-labor 

ratio” at the 2011 level.  

• Aggregate capital efficiency is used to calibrate a given trajectory for the 

share of wage income in total income.9 

In the long run, for a mature economy like the U.S., the average capital-labor 
ratio, in efficiency units, should remain relatively stable (column 6 of Table 2), 
indicating that the economy is on a balanced-growth trajectory. While this is a 
common feature of one-sector macroeconomic models, structural change in CGE 
models takes longer to stabilize in the baseline, and, therefore, the capital-labor 
ratio does not reach steady state, even after several decades.  

 
9 In particular, the labor share for U.S. is kept constant at its 2011 level, and all other 
countries converge to the U.S. level at a rate of 2% per year. 
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In order to target a constant capital to output ratio for mature economies and 
high capital accumulation for developing economies (Madison, 2001), a significant 
drop in the autonomous efficiency of capital could be calibrated in each period. 
This, however, does not seem reasonable as, most recently, innovations in 
information technology have been one of the main drivers of growth, especially in 
OECD countries. Although the GDP composition shifts towards more services 
with income growth (column 3 of Table 2), decreasing the autonomous efficiency 
of capital triggers a fall in the labor income share of total GDP (column 2 of 
Table 2). This contradicts historical evidence which only shows very slight 
declines for more advanced countries. Another undesirable outcome is that capital 
stock growth sharply decreases as its efficiency declines. 

The second scenario first directly targets a stable labor income share, in 
accordance with stylized facts from Kaldor (1961)10, and, then, calibrates average 
capital efficiency to avoid any substantial declines in this share. Under this 
scenario both the valued-added share of services and the capital to output ratio 
converge to realistic levels, while the rest of the indicators present values close to 
those of the baseline with “full structural change”. Thus, it appears promising to 
control the labor share via the efficiency of capital. Nonetheless, one needs to 
determine an appropriate projection of labor income share based on historical 
evidence, rather than imposing an ad-hoc convergence as implemented at present. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
10 Recent trends show that these stylized facts could be partly amended and that labor 
income shares have been in decline in OECD countries in the last decades (IMF, 2017), 
together with lower wage growth than capital income returns. But the actual fall in return 
to capital may be indicative that this phenomenom will not continue into future decades. 
For this reason, an overly sharp decline in labor shares over time may be not a realistic 
macroeconomic feature of long run growth. 
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Table 2. Baseline with alternative assumptions on capital efficiency: Macroeconomic 

Indicators in 2050 

Notes a-i: see Table 1. 
Source: OECD ENV-Linkages Model. 

Non-calibrating natural resource efficiency  

Similarly, natural resources efficiency in natural resources sectors is held fixed 
across all models, aside from the calibration of TFP as mentioned above. A 
potential explanation for this homogeneity would be that the models incorporate 
mechanisms for resource depletion or natural resource supply across fossil 
resources (coal, oil, gas) present in the GTAP database. But in either case, it is 
difficult to distinguish between resource depletion and technological 
improvements in the extraction sectors. In particular, the calibration of natural 
resources is often achieved through an endogenous parameter (such as the reserve 
depletion factor in MIRAGE-e) which could be interpreted as a change in 
productivity, a change in natural resource stocks, or a combination of both effects. 
Either an explicit resource depletion model or coupling with a technical model 
could be a solution for disentangling the two effects. However, the high-level of 
requirements in terms of data and modeling assumptions would be hard to justify 
given that very few teams need to address the issue. 

But there is no real reason that calibration of some resource efficient is absent 
of baseline construction. There exist, for example, some evidence that in some 
mining extraction sectors for a given amount of metallic ores extracted, the 
corresponding amount of pure metals available could change with some technical 
improvements (OECD, 2019). 
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People’s Republic of China 

Full structural change 58.6 51.7 4.1 3.2 0.88 40.8 1.18 10.8 5.3 

Constant capital to labor ratio 62.6 46.0 4.1 2.6 1.02 8.1 1.26 10.5 4.8 

Convergence in labor share 59.1 56.2 4.1 3.3 0.90 23.0 1.21 10.8 5.1 

U.S. 

Full structural change 73.9 65.6 1.5 1.3 0.96 6.0 1.02 15.3 3.5 

Constant capital to labor ratio 74.2 65.7 1.5 1.3 0.97 6.0 1.06 15.5 2.4 

Convergence in labor share 72.7 66.0 1.5 1.4 0.95 6.2 1.06 15.2 2.4 
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The exogenity of primary factor efficiency 

Another gap is the lack of endogenous efficiency mechanisms in CGE baselines. 
Nearly all efficiency improvement in primary factors, as discussed before, occurs 
via “no-cost technical change”. While technically it is possible to add such an 
endogenous process as a baseline feature (e.g. linking human capital and 
education expenses to labor efficiency or adding an R&D sector that captures TFP 
improvements), it seems that empirical evidence to build such internal mechanism 
are presently limited for the entire economy and at global level. Thus, when these 
mechanisms do exist, they remain limited to the sector of predilection of each 
team; for instance, an endogenous TFP in crops sectors for the MIRAGE-
AGRODEP models; learning curves in Power sectors (DART or AIM models) or in 
Iron and Steel (ENGAGE model). 

Future efforts on the role of primary factor efficiencies in CGE baseline 
construction should address three main topics: (1) the collection of evidence on 
factor (and especially labor) intensity trends, by sector and by country, (2) an 
examination of how and why these sectoral productivities change over time, and 
(3) the identification of when a sector’s production should be better calibrated via 
TFP or via labor productivity.  

Further, previous experiments in section 3.3 showed that improvements to 
capital and land efficiency in CGE baselines deserve additional attention as 
possible tools for targeting realistic labor income shares or crops yields, in the long 
run. 

4. Calibrating firms’ intermediate demands 

4.1 The importance of calibrating firms’ intermediate demands: an illustration with simple 
simulations 

Changes in non-factor input structures (i.e. the change in the composition of 
intermediate demand) across sectors represent a crucial aspect in the calibration 
of CGE baselines. Indeed, current trends and evidence show an intensification of 
services—increase in relative demand for service inputs as a share of total 
intermediate demand—in the production processes, which should be taken into 
account in CGE baselines. This intensification of services use in production process 
is a result of two different economic transformations: the “servitization” of 
manufacturing production, and the “digitalization” of economies which implies 
that all activities are more-service intensive. To illustrate the importance of 
calibrating firm’s intermediate inputs, in this section we consider broad changes 
to input structure from servitization.  

As discussed in Ho et al. (2020) of this same issue, almost all modelling teams 
assume non-homothetic preferences. These assumptions, together with growing 
GDP per capita and ageing population, help to project in the baseline a gradual 
increase in the share of services. The previous section of this paper highlighted 
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that the assumption of differentiated sectoral productivity also implies an 
increasing share of services in the long run. Nonetheless, it may be relevant to add 
an additional driver of structural change towards more services: an increase in the 
demand for services inputs by all sectors.  

To illustrate the importance of this additional driver, we use the ENV-Linkages 
model to implement three additional scenarios departing from the baseline “with 
full structural change” (described in section 3) but with alternative assumptions 
on the input-output structure of manufacturing and services sectors: 

1. A baseline that assumes “no Service Intensification”, where no changes in 
the input-output structure of industries and services sectors are assumed. 

2. A baseline that assumes “service intensification in manufacturing sectors” 
only. In this scenario, it is assumed that the CES coefficients of 
manufacturing sectors are adjusted such that coefficients for public and 
business services (transportation services excluded) increase by 1% each 
year (up to a limit of 0.6).11 This illustrative scenario of increasing services’ 
contribution to manufacturing is in line with recent trends since 1980, as 
discussed, for example, by the U.S. International Trade Commission 
(USITC, 2013).  

3. A baseline that assumes “service intensification in Services sectors” only. 
In this scenario, it is assumed that the CES coefficients of all services 
sectors are adjusted, such that coefficients for public and business services 
(transportation services excluded) increase by 0.2% each year (up to a limit 
of 0.75). 

In Figure 6, the projected valued added for services in the “no Service 
Intensification” scenario is 3-5 percentage points lower (as % of GDP) than in the 
baseline “with full structural change”, varying by the region considered. Both 
assumptions of the baseline with “service intensification in manufacturing 
sectors” and the baseline with “service intensification in Services sectors” roughly 
equally restore value-added share in services from the baseline “with full 
structural change”, as observed in Table 3. Moreover a more careful examination 
of simulation results (not reported here) shows that, without these assumptions 
about services intensification, the share of services in value added could be lower 
in 2050 than in 2011 for OECD countries as well as for India.  

 
 

 
11 The CES coefficients for non services intermediate demands are proportionately 
decreased such that the sum of all CES coefficients for intermediate demands still equals 
one in each period. A similar assumption is done for the next scenario. 
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Figure 6. The intensification of services in production processes drives the increase in the 
share of services in total GDP: Gross value added at basic prices in percentage of GDP in 

2050 

Notes: For sake of readability, the axis starts at 30%. The grey bars show a baseline “with no service-
intensification”. We then add the red bar to obtain the baseline with “services intensification in 
manufacturing”. Then the total bars show the value added for services in the “full structural 
changes” baseline mentioned in section 2. The blue bar is obtained in the figure as residual 
difference. 

Source: OECD ENV-Linkages Model. 

Interestingly, changing Input-Output coefficients towards increasing services 
use has relatively neutral implications for the other macroeconomic indicators (see 
Table 3). While it has a positive impact on the services share, it has almost no effect 
on other indicators. The GHGs emissions and labor income share are slightly 
lower, and the Services Price Index is slightly higher (as a response to higher 
demand for intermediate services).  
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Table 3. Macroeconomic indicators: “services intensification” baselines  

Macroeconomic Indicators in 2050 

  

Services 
sharea 

Labor 
Income 
Shareb 

labor 
productivity 

growth c 

wage 
growthd  

Service 
Price e 

Capital 
to labor 

f 
CPI g 

GHGs 
per 

capita 
h 

TPED 
i 

 

% of 
GDP 

% of 
GDP 

Av. annual 
growth rate 

Av. 
annual 
growth 

rate 

Base 1 
in 2011 

efficient 
units 

Base 1 
in 

2011 

Tonnes 
of CO2 
eq. per 
capita 

Billion 
tonnes 
of oil 
eq. 

People’s Republic of China 

No Services Intensification 54.2 52.4 3.9 3.2 0.8 40.9 1.2 11.1 5.3 
Services Intensification in 
Manufacturing 56.8 51.7 3.9 3.2 0.9 40.7 1.2 10.9 5.3 
Services Intensification in 
Services 56.0 52.4 3.9 3.2 0.9 41.0 1.2 11.0 5.3 

Full structural change 58.6 51.7 3.9 3.2 0.9 40.8 1.2 10.8 5.3 

U.S. 

No Services Intensification 70.9 65.3 1.6 1.3 0.9 5.9 1.2 15.7 2.4 
Services Intensification in 
Manufacturing 72.5 65.4 1.6 1.3 1.0 6.0 1.1 15.6 2.4 
Services Intensification in 
Services 72.3 65.5 1.6 1.3 1.0 6.0 1.1 15.4 2.4 

Full structural change 73.9 65.6 1.6 1.3 1.0 6.0 1.1 15.3 2.4 

Notes a-i: see Table 1. 
Source: OECD ENV-Linkages Model. 

4.2 General practices and existing modelling strategies for calibrating firms’ intermediate 
demands  

An examination of practices across modelling teams shows that very few teams 
control the future input-output structures of their baseline, beyond introducing 
limited assumptions on energy efficiency and adjustments to food and agriculture 
related products. Likewise, for most teams, the demands for service inputs by 
firms are not controlled.  

Some teams do assume a transformation of economies towards an 
intensification of service inputs in production processes. However, there is a lack 
of evidence on how structural change is driven by changes in composition of 
intermediate inputs in production. Therefore modelling teams proceed to 
implement ad-hoc manipulations of the input-output structure in order to project 
an intensification of service use—such as in the ENV-Linkages model (OECD, 
2015)—rather than properly calibrate the baseline on existing external projections. 
Researchers at the Joint Research Center of the European Commission (JRC 
Seville) are currently working towards providing such projections. 
 
 



Journal of Global Economic Analysis, Volume 5 (2020), No. 1, pp. 109-161. 

 
 

134 
 

General practices for calibrating energy demand in CGE baselines 

While there is limited work done on an improved calibration of the services 
sectors, there are multiple examples of calibration of firms’ intermediate demands 
in sectors that help respond to specific policy questions (e.g. energy and food 
production). In particular, the role of energy projections in CGE baseline 
construction is one of the most explored topics, as highlighted by Faehn et al. 
(2020) in this special issue.  

All the models reviewed assume autonomous energy efficiency improvements 
(AEEI) which imply structural change concerning the value added of energy 
sectors in total GDP. Most teams assume a constant exogenous rate of about 1% 
annual growth for all activity sectors and the energy carriers (ENVISAGE, FARM, 
ICES). Other modelling teams adopt sector and fuel specific assumptions, though 
still implemented on a constant basis (MIRAGE-E, DART, and AIM). Finally, as 
described in Delzeit et al. (2020), other modelling teams calibrate these AEEI to 
reproduce external projections of energy demand from simulations with partial 
equilibrium (PE) or energy-system models. For example, the OECD ENV-Linkages 
Model is soft linked with the IEA-WEM model, IMACLIM is soft linked with the 
POLES model, and GEM-E3 is soft linked with the PRIMES model. 

The example of energy calibration highlights tradeoffs in the choices of supply-
side calibration. CGE baselines should reflect common characteristics of most 
available energy projections, such as the increased electrification of the energy 
system in the future (IEA, 2017). These trends are fully reflected when models 
directly reproduce external projections. On the other hand, some of the teams that 
set a uniform AEEI trend for all fuels and sectors and impose an increase of the 
CES share parameter of electricity in the energy bundle (ENVISAGE model). 
Further investigations should examine the extent to which controlling the CES-
coefficients versus adjusting AEEI best calibrates increasing electrification in 
baselines. Either way, calibrating to exogenous energy projections through model 
parameter changes (AEEI or CES coefficients) is advantageous in that it explicitly 
aligns the CGE baseline to be in track with energy models12 (see Delzeit et al., 
2020).  

4.3 Gaps in calibrating firms’ intermediate demands and towards better practices 

As highlighted in the previous section, modelling teams make some efforts in 
targeting intermediate demands in order to imply realistic changes to the sectoral 
composition of GDP in CGE baselines.  
 

 
12 In the paper of Faehn et al. (2020), a comparison of the energy system under the “naïve 
baseline” and the “full structural change baseline”, as discussed in sections 2, shows how 
this calibration process matters for projected energy demands, using the OECD ENV-
Linkages model.  
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Calibrating some intermediate demands is sometimes missing 

However, some important trends have been overlooked. Indeed, projections of 
certain sectors in CGE baselines can be unrealistic because the changes to 
household preferences are insufficient, and, to compensate, a modeler could 
calibrate intermediate demands for these goods by firms. However, the problem 
is that empirical validation is generally weak. Checking projections of the share of 
services versus that of agriculture or industries is one recommended step, but, in 
general, modelling teams do not go beyond this step. 

Certain commodities appear to be crucial inputs for particular sectors in many 
models. However, when external projections or historical evidence are missing, 
the corresponding variables in the CGE baseline are not calibrated (e.g. iron and 
steel demand by the construction sector or by vehicle manufacturers). In the best 
case, where efficiency parameters for certain commodities are calibrated (e.g. feed 
efficiency for livestock sectors) to target a desired projection for these commodities 
(e.g. feed demand), the justification of the target themselves is generally not 
discussed. As additional example, while most modelling teams pay attention to 
the calibration of food demand parameters in order to indirectly calibrate the 
production level of agricultural sectors, generally little attention is paid to the 
calibration of textile demand parameters. 

The issue of consistency between existing projections of intermediate demands and their 
implementation in CGE baselines 

Even when projections or evidence for certain efficiency trends are available 
and well documented (such as fertilizer efficiency projections from agricultural 
models like IIASA-GLOBIOM or IFPRI-IMPACT), it is still not easy to “import” 
these trends into CGE baselines. Indeed, there is a lack of consistency between the 
theoretical structure of CGE and the PE models that prevents parameters 
calibrated in PE models from being directly used in CGE models. For example, in 
the IFPRI-IMPACT agricultural model international trade assumes product 
homogeneity while CGE models are characterized by product heterogeneity and 
distinction between domestic and imported goods. Similarly, modelers should 
avoid implementing efficiency parameters calibrated with another model which 
was calibrated to a different baseline, because factor efficiency calibration is model 
dependent 

The problem is even more acute for projections of the energy system, where 
energy demand by one sector is targeted but the production of the same sector is 
not. This is problematic as energy demand alone is less relevant if related 
projections of energy intensive industry production (e.g. steel, cement) or other 
energy intensive activities (e.g. transportation) are not considered. A desirable, 
albeit difficult, good practice should be that targeted projections of input demand 
by certain sectors are aligned with consistent projections of activity levels for the 
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same sector. For example, when reproducing energy projections of a partial 
equilibrium model in a CGE baseline, the modeler should also take into account 
projections for GDP, and for key sectors (e.g. steel, cement, and transport). Not 
accounting for these economic factors of the energy model could potentially be a 
major source of errors (Chateau, Magné and Cozzi, 2013).  

A good practice in a CGE baseline intended to target projections of exogenous 
intermediate demand would be to calibrate intermediate demand parameters 
(efficiency or CES shares) to match sectoral intermediate demand intensities and 
not demand levels. But here again the relevant information should be available  

5. Conclusion and further research efforts 

This review of common practices used in CGE provides some simple guidelines 
about supply-side drivers of structural changes to design baseline projections, and 
highlights gaps in modelling practices. 

Simple simulations with different assumptions on drivers of structural change 
show that CGE baselines that exploit available information on projected supply-
side structural change tend to be more realistic than baselines that leave structural 
changes to be endogenously determined by the model. 

A review of 24 models similarly concludes that when teams calibrate 
production parameters (efficiency or scale and CES parameters) for both primary 
factors and intermediate inputs, they produce a more realistic baseline in terms of 
the future sectoral composition of economies. The review indicates that there is no 
common practice on the choice of the production parameters used to target 
differences of productivity across sectors and GDP. While a majority of the 
modelling teams choose labor efficiency to play this role, a non-negligible number 
of teams opt for TFP. This choice has an impact on the projected structural change 
in the baseline, generally involving different GDP shares of labor income and 
services. The review also highlights that the calibration of capital (and natural 
resources) efficiency is generally not exploited by modelling teams and could for 
example be used to successfully target plausible wage income shares.  

In terms of future developments, more efforts could be used to identify the 
main characteristics of supply-side structural change associated with economic 
growth that dynamic CGE models should try to mimic. Using information on the 
projected dynamics of key sectors, such as services, energy and agriculture, are 
common good practice among the reviewed models. However, the projections for 
other sectors are still poorly represented in most CGE baselines. For example, 
improving the realism of projections for key manufacturing sectors (heavy 
industries, textiles) could greatly improve the baseline calibration of CGE models, 
especially when agriculture or energy are the key focus of the modelling analysis. 

While most models try to exploit available sectoral projections, it is difficult to 
collect comprehensive information on what future economic growth means for 
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future changes in the sectoral composition of the economy. Furthermore, in the 
future there might be new sectors and goods arising thanks to technological 
improvements. These are difficult to foresee and therefore model. Nevertheless, 
some efforts are being made in modelling future developments of new 
technologies and sectors. Examples include the case of electric systems. Indeed, 
half of the teams reviewed in this paper adopt multiple technology for electricity 
generation and impose in their baseline some projections about future electricity 
mix across power technologies. Other examples include the introduction of 
multiple technologies for agricultural production, such as the distinction between 
rain-fed and irrigated technologies in the GTAP-W model (Calzadilla et al. 2011), 
or multiple technologies for metals production in ENGAGE-materials (Winning et 
al. 2017) and in ENV-Linkages (OECD 2019). Despite these examples, more work 
is needed to integrate new technologies in CGE baselines, at least regarding the 
introduction of key existing technologies such as large electric or hydrogen 
vehicles or the “digitalization” of traditional activities. This would offer a more 
realistic picture of long run structural change. 

Another interesting aspect that deserves further attention is the incorporation 
of supply-side structural changes due to the projected impacts of climate change and 
other environmental damages (e.g. pollution costs, water scarcity). These shocks 
are generally integrated in CGE baselines as sector-specific exogenous shocks to 
the production function, as discussed by Sue Wing and Lanzi (2013), and they can 
be considered as drivers of supply-side structural change. Examples of integration of 
environmental damages in CGE baselines can be found in several papers on 
climate (Roson and van der Mensbrugghe, 2012; Ciscar et al., 2011; Eboli et al., 
2010; Bosello et al. 2012; Dellink et al., 2019) and a few on air pollution (Lanzi et 
al., 2018; Vrontisi et al. 2016; Vandyck et al., 2018). Even if introducing 
environmental damages in a baseline might not be essential for all CGE teams, this 
issue will gain increasing importance as climate change impacts become more 
apparent. As such, it will be important to further develop these aspects.  

Overall, it is encouraging to see that most CGE models exploit sectoral existing 
information to tailor their baseline calibration to their needs. Further collaboration 
and data exchange could be beneficial for different teams, and for new model 
developments. 
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Appendix A. Details on Models  

Table A.1. Main characteristics of models reviewed  

  Model Name Institution Model TYPE Country 
Coverage 

Capital 
vintage 

Trade 

1 ADAGE RTI/US-EPA CGE GLOBAL / 
US 

yes Armington 

2 AIM NIES IAM (CGE + 
Spatial 

explicit land 
use model) 

GLOBAL yes Armington 

3 DART KIEL 
institute for 

world 
Economy 

CGE GLOBAL No Armington 

4 EC-MSMR ENV Canada CGE/Macro GLOBAL / 
Canada 

yes (?) Armington 

5 ENGAGE UCL CGE GLOBAL no Armington 

6 ENVISAGE GTAP CGE GLOBAL yes Armington 

7 GAPS-
ENVISAGE 

FAO Partial 
AG(GAPS) / 

CGE 
(ENVISAGE) 

GLOBAL yes net trade 
(GAPS)  

8 ENV-Linkages OECD CGE GLOBAL yes Armington 

9 EPPA MIT/US-
EPA 

CGE GLOBAL yes Armington 

10 EU-EMS PBL CGE   no ? 

11 EXIOMOD TNO IO/CGE   ? ? 

12 FARM US-DA CGE GLOBAL ? ? 

13 Gdyn GTAP CGE GLOBAL no   

14 GEM-E3 JRC CGE GLOBAL no Armington 

15 GLOBIOM-
MESSAGE 

IIASA IAM/PE GLOBAL no   

16 ICES CMCC CGE GLOBAL no Armington 

17 IGEM Jorgenson et 
al. 

RE model US no closed 
economy 

18 IMACLIM-R CIRED CGE GLOBAL / 
France 

yes Armington 

19 MAGNET LEI CGE GLOBAL no Armington 

20 MAGNET THUNEN CGE GLOBAL no Armington 

21 MIRAGE-e CEPII CGE GLOBAL no   

22 PACE ZEW CGE GLOBAL no?   
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  Model Name Institution Model TYPE Country 
Coverage 

Capital 
vintage 

Trade 

23 REMIND PIK Macro/ENR
G 

GLOBAL   New 
approach 

24 SNoW-NO Statisics 
Norway 

CGE Norway no Armington
/small 
open 

economy 
25 TEA PPE/COPPE CGE GLOBAL no Armington 

26 WEGDYN_AT Wegener 
Center 

CGE GLOBAL / 
Austria 

no Armington 

27 MIRAGRODEP IFPRI CGE GLOBAL yes Armington 
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Table A.2. Assumptions about primary factor efficiency of models reviewed  

  Model Name Institution TFP L K LAND NatRes e feed fertilizer emissions 

1 ADAGE 
RTI/US-

EPA 
Exogenous 

Endogeno
us  / GDP 
endogeno

us 

? ? ? EXO ? ? ? ? 

2 AIM NIES Endogenous 

Endogeno
us  / GDP 
endogeno

us 

EXO 
constant 
for non-
energy 

transform
ation 

sectors 
(ETP) / 
ENDO  

EXO 
(FAO/IFP

RI) 

For fossil 
fuel, 

reserve 
and 

cumulativ
e 

consumpt
ion are 

considere
d 

increase 
pref. for 

ELY  
EXO / 1% EXO / 0% 

LAP 
emissions 

rates / 
GAINS 

3 DART 

KIEL 
institute for 

world 
Economy 

ENDO 
(Aggregate) / 
GDP EXO + 
TFP crops 

ENDO / crop 
yield EXO 
(source?) 

Exogenou
s (human 

capital 
projection

s) 

?   ? 
EXO 

(source?) 
EXO / 0% EXO / 0% ? 

4 EC-MSMR 
ENV 

Canada 
Exogenous ? ? ? ? 

EXO 
(using 

another 
model) 

? ? ? 
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  Model Name Institution TFP L K LAND NatRes e feed fertilizer emissions 

5 ENGAGE UCL 
Endogenous at 

aggregate 
level 

Endogeno
us  and 

sectoral / 
GDP 

endogeno
us 

No 
EXO 

(FAO/IFP
RI) 

No 

ENDO to 
reproduce 

a given 
energy 

mix 

No No No 

6 ENVISAGE GTAP Exogenous 

Endogeno
us and 

sectoral / 
GDP 

endogeno
us 

? 
EXO 

(FAO) 
NO 

EXO : 
1%/yr 

EXO 
(FAO)  

? ? 

7 
GAPS-

ENVISAGE 
FAO Exogenous 

with 
ENVISAG
E:Endoge
nous  and 
sectoral / 

GDP 
endogeno

us 

(same as 
ENVISAG

E) 

EXO 
(FAO) 

NO 
EXO 

(ENVISA
GE) 

GAPS 
based on 

FAO 
GLEAM 
model 

for 
agricultur

e post-
solve in 

GAPS; for 
the rest of 
the sectors 

same as 
ENVISAG

E 

for 
agricultur

e post-
solve in 

GAPS; for 
the rest of 
the sectors 

same as 
ENVISAG

E 

8 ENV-Linkages OECD 

Endogenous 
for Crops only 

/ Crops 
output 

exogenous 

Endogeno
us and 

sectoral / 
GDP 

endogeno
us+ 

ENDO / 
Aggregate 
for labour 

share 
EXO 

EXO 
(IFPRI) 

NO 

ENDO / 
energy 

intensity 
(IEA) 

EXO 
(GLOBIO

M)  
EXO / 0% 

LAP 
emissions 

rates ( 
GAINS) - 
industrial 

and 
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  Model Name Institution TFP L K LAND NatRes e feed fertilizer emissions 

Converge
nce of 

sectoral 
Productivi

ty to 
OECD 

Fugitive 
GHG (US-
EPA/IEA)  

9 EXIOMOD TNO Exogenous 

Exogenou
s (from 

CEPII) / 
endogeno
us GDP 

? 
EXO 

(FAO) 
  

EXO 
(CEPII) 

? ? ? 

10 FARM US-DA   

Endogeno
us and 

sectoral / 
GDP 

endogeno
us 

Fixed 
constant 

some 
exception 
SOL&WI

ND 

EXO 
(IFPRI) 

  EXO / 1% ? ? ? 

11 Gdyn GTAP 

EXO 
adjustment for 
Food - TFP oil 
ENDO / OIL 
PRICE EXO  

Endogeno
us and 

sectoral / 
GDP 

endogeno
us 

? 
ENDO 

sectoral / 
GDP EXO 

ENDO 
sectoral / 
GDP EXO 

EXO  ? ? ? 

12 GEM-E3 JRC 

ENDO 
(sectoral 

difference) / 
GDP EXO 

Endogeno
us and 

sectoral / 
GDP 

ENDO 
sectoral / 
GDP EXO 

na EXO EXO na na EXO 
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  Model Name Institution TFP L K LAND NatRes e feed fertilizer emissions 

endogeno
us 

13 ICES CMCC   

Endogeno
us and 

sectoral / 
GDP 

endogeno
us 

na 

EXO: 
Source 

ISI-MIP / 
Level: 

Based on 
historical 

yield 
trend 

na 
EXO 

(IEA) <1% 
na na na 

14 IGEM 
Jorgenson et 

al. 

Exogenous 
and sectoral / 

GDP 
endogenous 

        

projected 
with 

energy eq. 
System 

    
Adjustme
nt to US-

EPA 

15 IMACLIM-R CIRED 
Exogenous 

fixed 

Endogeno
us and 

sectoral / 
GDP 

endogeno
us 

ENDO: 
Capacity 
constraint 

Exo: 
hardlinke

d NLU 
model 

for fossil 
fuel: cost 

curves 
(grades) 

 ENDO 
catch up 

of 
efficiency 

Exo: 
hardlinke

d NLU 
model 

EXO  ? 

16 MAGNET LEI 

ENDO 
(sectoral 

difference) / 
GDP EXO 

Endogeno
us and 

sectoral / 
GDP 

endogeno
us 

no 

EXO 
(IMAGE) 
+ ENDO 

factor (via 
sumstituti

on with 
other 

ENDO 
sectoral / 
GDP EXO 

EXO for 
feedstock 

(enrgy 
models, 0 
in case no 
informati

on), 

EXO 
(IMAGE) 
+ ENDO 

factor (via 
sumstituti

on with 
other 

ENDO 
sectoral / 
GDP EXO 

EXO 
(IMAGE), 
EXO/EN

DO 
dependin
g on CO2 
price in 
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  Model Name Institution TFP L K LAND NatRes e feed fertilizer emissions 

primay 
input and 

fert. 

EDNO/se
ctoral for 

other 
input 

primay 
input and 

fert.) 

place 
(IMAGE 
or other 
external 

data) 

17 MAGNET THUNEN 

Endogenous 
(aggregate 

level) / GDP 
exogenous 

na na na na na na na na 

18 MIRAGE-e CEPII 

ENDO 
(sectoral 

difference) / 
GDP EXO + 

Transportation 
specific 

? ? EXO: 0   
EXO (own 

source) 
EXO: 0   EXO: 0 

19 REMIND PIK   

Endogeno
us and 

sectoral / 
GDP 

endogeno
us 

  
EXO 

(MagPIE) 
  

EXO 
(Energy 
Model)  

    No 

20 TEA PPE/COPPE 

ENDO 
(sectoral 

difference) / 
GDP EXO 

EXO / 
sectoral 

diff 
No EXO : 1% No 

COFFEE 
energy 
Model 

No No No 
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  Model Name Institution TFP L K LAND NatRes e feed fertilizer emissions 

21 WEGDYN_AT 
Wegener 
Center 

ENDO 
(aggregate) / 

GDP EXO 

effective 
labor 

supply: 
EXO: 

1%yr in 
addition 

to 
populatio
n growth 

ENDO: 
investmen
t drives K 

stock, 
which 
gives 

effective 
K supply 

EXO 
(IIASA 

SSP crop 
landcover

) 

no 
EXO : 
1%/yr 

no no no 

22 MIRAGRODEP IFPRI 

Non Ag 
sector: 

Targeted on 
IMF projection 
from baseyear 

to 2025. 
Average TFP 
growth rate 

over between 
2015-2025 
applied 

between 2025-
2030. Ag 

sector: 
Adjusted to 

duplicate 
AglinkCosimo 
or FAO yield 
projections 

n.a. n.a. n.a. n.a. 
no change 

in 2030 
baseline. 

no change 
in 2030 

baseline. 
n.a. n.a. 
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  Model Name Institution TFP L K LAND NatRes e feed fertilizer emissions 

(for 
commodities 
not included 

in 
AgLinkCosim

o) 
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Table A.3. Assumptions about intermediate demand efficiency of models reviewed 

  

Model Name 

Other Technological Changes 

Changes in intermediate 
demand 

Trade Preferences 

  

Natural 
Res. 

Supply 
(shifter) 

new 
Technology 

/ new 
Goods 

Changes in 
Multiple 

Technology 

1 ADAGE ? 
Adv POW 

/ Adv 
BioFuel 

POWER / 
calib : ? 

? ? ? 

2 AIM 

NatRes to 
target 
prices  

Adv POW 
/ 

Hydrogen, 
2d Gen BF 

None in 
BaseYear 

increase 
pref. for 
renew / 

Cost curves 
for ren. 
POWER 

Steel input: 3% per annual 

No 

Food; 
Income 

elasticity is 
calibrated 
based on 

FAO 
proejction 

Food to service sector: 
calibrated from FAO 

projection 

3 DART ?   

POWER 
learning 

curves for 
renew /  
learning 

curves for 
renew. in 
general 

? ? convergence? 
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Model Name 

Other Technological Changes 

Changes in intermediate 
demand 

Trade Preferences 

  

Natural 
Res. 

Supply 
(shifter) 

new 
Technology 

/ new 
Goods 

Changes in 
Multiple 

Technology 

4 EC-MSMR ? 

backstops 
for Power 

& 
Transport + 
Hydrogen 

+ CCS 

? ? ? ? 

5 ENGAGE   
No CCS 
power 

Reproduce 
a given 

power mix 
(from 

TIAM-
UCL) 

      No in BAU 

6 ENVISAGE ? 
CCS - 

POWER & 
Adv POW 

increase 
pref. for 
renew in 

POWER & 
CC for 

renewable 

AG&Food Coeff 
adjustments / increase pref. 

for ELY vs NON-ELY for 
transport 

Itl. 
Transport 

cost : EXO -
1% 

control of 
food demand 

& Agr. / 
increase pref. 

for ELY vs 
NON-ELY  
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Model Name 

Other Technological Changes 

Changes in intermediate 
demand 

Trade Preferences 

  

Natural 
Res. 

Supply 
(shifter) 

new 
Technology 

/ new 
Goods 

Changes in 
Multiple 

Technology 

7 ENV-Linkages 

ENDO / 
Fossil Fuel 
Price EXO 

(IEA) 

NO CCS - 
POWER in 

BAU 

reproduce a 
given 

power mix 
(IEA) 

Increase of 
services input in 

production / 
AG&Food Coeff 

(IFPRI) 

  

Itl. 
Transport 

cost : EXO -
1% / 

Increase 
Services 
trade / 
Increase 

import by 
OECD from 
Non-OECD 

ENDO pref. 
For energy 
demands 

(IEA) / for 
Agr and 

Food (IFPRI) 
+ conditional 
convergence 
of preference 

towards 
OECD 

8 EPPA ? 

POWER 
CCS + 

backstops 
for Power 

& 
Transport 

? ? ? 

control food 
demand via 

non-
homothetic 

pref. 
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Model Name 

Other Technological Changes 

Changes in intermediate 
demand 

Trade Preferences 

  

Natural 
Res. 

Supply 
(shifter) 

new 
Technology 

/ new 
Goods 

Changes in 
Multiple 

Technology 

9 FARM ? ? 

deline cost 
of SOL & 

WIND 
(how?) 

AG&Food Coeff  ? 

control food 
demand food 
+ control of 

min 
subsitiance 

to mact 
what? 

10 GEM-E3 

Exo 
(POLES) - 

internatinal 
prices and 
volumes 

Exo 
(PRIMES, 

POTEnCIA, 
POLES) - 
both costs 

and market 
share 

Exo 
(PRIMES, 

POTEnCIA, 
POLES) - 
both costs 

and market 
share 

Electrification trend 

Long Term 
convergence 
(in 2125) of 

current 
account to 0 
(except for 

energy 
producers) 

Exo Food,  
Transport, 

Energy 
(POLES, 

POTEnCIA, 
PRIMES) 
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Model Name 

Other Technological Changes 

Changes in intermediate 
demand 

Trade Preferences 

  

Natural 
Res. 

Supply 
(shifter) 

new 
Technology 

/ new 
Goods 

Changes in 
Multiple 

Technology 

11 IMACLIM-R 
IEA, cost 

curves 

none, 
because not 
competitive 

(but EV, 
CCS, … 

available) 

endogenous 
technology 
mix (PE), or 
exogenous 

(IEA) 

Exogenous trends for 
services/transport/agrifood 

Itl. 
Transport 

cost : EXO -
1% 

conditional 
convergence 
of preference 

towards 
OECD + exo 

scenarios 

12 MAGNET       
AG&Food coeff in services 

sector linked to primary 
demand 

trade 
scenarios 

Control food 
demand food 

via 
(clibrated) 
income el. 
function of 

PPP-
RGDP/cap 

13 MIRAGE-e 

ENDO / 
Fossil Fuel 
Price EXO 

(IEA) 

        

trade 
scenarios / 

NTM 
calibrated 

with Iceberg 
Costs 

None 
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Model Name 

Other Technological Changes 

Changes in intermediate 
demand 

Trade Preferences 

  

Natural 
Res. 

Supply 
(shifter) 

new 
Technology 

/ new 
Goods 

Changes in 
Multiple 

Technology 

14 REMIND   
NO CCS in 

BAU 

learning 
curves for 
renew. in 
general 

      
increase pref. 

for ELY vs 
NON-ELY  

15 TEA 
Fossil Fuel 

(IEA) 

No 
backstop 

techs 
No 

AG&Food Coeff 
adjustments  

No change 
in intl. 

transport 
costs 

control of 
food demand 

& Agr. / 
shift of 

preference 
over energy 

carriers 

16 WEGDYN_AT 

NatRes 
ENDO / 

target 
prices  

no 

portfolio 
standard 
pathways 

for 
electricity 

mix 

no no 
ENDO (CES 

function) 
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Model Name 

Other Technological Changes 

Changes in intermediate 
demand 

Trade Preferences 

  

Natural 
Res. 

Supply 
(shifter) 

new 
Technology 

/ new 
Goods 

Changes in 
Multiple 

Technology 

17 MIRAGRODEP 

Calibrated 
to world 

price target 
for oil, coal 

(IEA), to 
regional 

price target 
(natural 

gaz) 

n.a. n.a. 
no change by 

2030 
  

no change 
in volume, 
cost (price) 

endogenous 

adjustment 
in food 

demand 
(income 

elasticity)l. 
Threshold on 
calories per 

capita 
consumption 
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Appendix B. Model aggregation for baseline/scenario runs  

Table B.1. Sectoral and Regional Aggregation1  

  Sectors Regions   

cro-a Crops USA U.S. 

lvs-a Livestock OAM 
Other OECD America: Canada, Chile, 
Mexico 

fsh-a Fisheries OUE OECD Europe 

frs-a Forestry OPA 

OECD Pacific: Australia, Japan, New-
Zealand, South Korea 

omn-a Other mining CHN People’s Rep. of China and Hong Kong 

coa-a Coal extraction IND India 

oil-a Crude oil extraction LAM Other America 

gas-a 
Natural gas extraction & 
dist. 

RAN 

Eurasia: Armenia, Azerbaijan, Georgia, 
Kazakhstan, Kyrgyzstan, Russian 
Federation, Tajikistan, Turkmenistan, 
Uzbekistan 

crp-a Chemicals MEN Middle East & North African countries 

fdp-a Food products OAF Other Africa 

txt-a Textiles ODA Other Asia 

ppp-a Pulp, paper & publishing     

crp-a Chemicals Aggregate   

p_c-a Petroleum & coal products OECD OECD 

nmm-a Non-metallic minerals NONOECD Non-OECD 

i_s-a Iron and steel WORLD World 

nfm-a Non-ferrous metals     

oma-a Other manufacturing     

cns-a Construction     

clp-a Coal powered electricity     

olp-a Oil powered electricity     

gsp-a Gas powered electricity     

nuc-a Nuclear power     

hyd-a Hydro power     

wnd-a Wind power     

sol-a Solar power     

xel-a Other power     

etd-a 
Electricity transmission & 
dist.     

wts-a Water collection & dist.     

otp-a Land transport     

 
1 Aggregated from GTAP Data Base V9? 
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atp-a Air transport     

wtp-a Water transport     

osc-a Other services & dwellings     

osg-a 
Other services 
(Government)     
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Appendix C. Stylized Facts, selected countries: 1957-2017  

  

GDP per capita 
(constant PPP) 

Capital to labor 
ratio (persons) 

Capital to 
output ratio 

Labor 
productivity 

(persons) 

Share 
of 

labor 

Share 
of 

Services 

Country Year level Growtha level growtha level growtha level growtha 
% of 
GDP 

% of 
GDP 

China 

1957 1206   1667   1.2   2819   59%   

1967 1259 0.4% 2538 4.3% 1.9 4.4% 3070 0.9% 59%   

1977 1548 2.1% 4007 4.7% 2.3 2.0% 3353 0.9% 59% 22% b 

1987 2552 5.1% 6337 4.7% 2.3 -0.1% 4812 3.7% 59% 30% 

1997 3563 3.4% 12213 6.8% 2.8 2.3% 6295 2.7% 59% 35% 

2007 7055 7.1% 40480 12.7% 3.4 1.7% 12641 7.2% 55% 43% 

2017 13043 6.3% 133700 12.7% 5.0 4.0% 22481 5.9% 58% 52% 

France 

1957 8994   60930   4.1   19994   70%   

1967 13583 4.2% 91704 4.2% 4.0 -0.2% 33177 5.2% 67%   

1977 20334 4.1% 154894 5.4% 4.4 1.0% 49718 4.1% 70% 65% b 

1987 21996 0.8% 174836 1.2% 4.7 0.8% 54253 0.9% 64% 69% 

1997 27039 2.1% 214355 2.1% 4.8 0.1% 66212 2.0% 62% 74% 

2007 35753 2.8% 356433 5.2% 4.6 -0.4% 84884 2.5% 61% 77% 

2017 39461 1.0% 539770 4.2% 4.9 0.7% 96365 1.3% 63% 79% 

Nigeria 

1957 3106   3596   1.9   6807   25%   

1967 3287 0.6% 5442 4.2% 3.3 5.5% 7814 1.4% 25%   

1977 6945 7.8% 13343 9.4% 3.6 0.8% 17277 8.3% 25% 32% b 

1987 1133 -16.6% 10546 -2.3% 5.7 4.8% 3514 -14.7% 31% 27% 

1997 461 -8.6% 2990 -11.8% 3.9 -3.7% 1407 -8.7% 33% 22% 

2007 4437 25.4% 16524 18.6% 2.1 -6.1% 13662 25.5% 30% 27% 

2017 4285 -0.3% 37781 8.6% 2.2 0.5% 12618 -0.8% 49% 60% 

USA 

1957 16799   128290   3.8   42637   64%   

1967 22214 2.8% 149579 1.5% 3.6 -0.6% 55991 2.8% 63%   

1977 27603 2.2% 194770 2.7% 3.6 0.0% 63962 1.3% 62% 66% b 

1987 34065 2.1% 220364 1.2% 3.5 -0.2% 71661 1.1% 62% 70% 

1997 41664 2.0% 247521 1.2% 3.3 -0.6% 85381 1.8% 61% 75% 

2007 50965 2.0% 355316 3.7% 3.2 -0.3% 104771 2.1% 60% 77% 

2017 54795 0.7% 394492 1.1% 3.2 -0.2% 114693 0.9% 60% 79% 

Notes: a average annual growth rate over the corresponding period, b value for 1980  

Source: Penn World Table (Feenstra et al., 2015) and World Development Indicator Database 
(World Bank) for the last column: share of services in GDP 
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Appendix D. Details about baseline scenarios discussed in section 3.1 

(1.) The “naïve baseline” assumes that labor efficiency is homogenous across 
sectors and calibrated to target projected regional GDP, given some population 
and labor participation exogenous projections and investment to GDP projections. 
These socio-demographic and savings assumptions are the same for all scenarios 
considered. 

(2.) The “baseline with adjusted efficiencies of primary factor” assumes that 

primary factor efficiencies (L, K, Land, TFP) are sector specific. The main 
assumptions implemented in this scenario are: (i) differentiated growth rates of 
labor efficiency by sector, (ii) exogenous yield efficiency for crops extracted from 
the IFPRI IMPACT model (Robinson et al. 2015) and (iii) non-zero growth rates of 
capital efficiency.  

(3.) The baseline with “adjusted intermediate demands” is similar to the “naïve 
baseline” but assumes some adjustments to intermediate demand efficiencies, 
including: (i) increased use of services as inputs into both manufacturing and 
services production processes, (ii) improvements in autonomous energy 
efficiency, (iii) changes in the electricity mix, and (iv) assumptions on feed and 
fertilizer efficiencies in agricultural production.  

(4.) The baseline with “full structural change” combined both the adjustment of 
efficiencies of primary factor of scenario (2.) and the adjustments of intermediate 
demands of scenario (3.). 

The numeric values of these assumptions and outcomes are available in the 
Excel file in the supplementary materials (Table D.1). 
 

 

 


