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Modern Trade Theory for CGE 
Modelling: 

the Armington, Krugman  
and Melitz Models 

BY PETER B. DIXONa, MICHAEL JERIEb AND MAUREEN T. RIMMERc  

This paper is for CGE modelers and others interested in modern trade theory. 
The Armington specification of trade, assuming country-level product 

differentiation, has been central to CGE modelling for 40 years. Starting in the 
1980s with Krugman and more recently Melitz, trade theorists have preferred 
specifications with firm-level product differentiation. We draw out the connections 
between the Armington, Krugman and Melitz models, deriving them as 
successively less restrictive special cases of an encompassing model. 

We then investigate optimality properties of the Melitz model, demonstrating 
that a Melitz general equilibrium is the solution to a global, cost-minimizing 
problem. This suggests that envelope theorems can be used in interpreting results 
from a Melitz model. 

Next we explain the Balistreri-Rutherford decomposition in which a Melitz 
general equilibrium model is broken into Melitz sectoral models combined with an 
Armington general equilibrium model. Balistreri and Rutherford see their 
decomposition as a basis of an iterative approach for solving Melitz general 
equilibrium models. We see it as a means for interpreting Melitz results as the 
outcome of an Armington simulation with additional shocks to productivity and 
preferences variables. 

With CGE modelers in mind, we report computational experience in solving a 
Melitz general equilibrium model using GEMPACK. 
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1. Introduction 

This paper is about modern trade theory. Our interest in this topic is from the 
point of view of computable general equilibrium (CGE) modellers working 
primarily on policy problems for governments. The paper was initially written 
just for us. We were trying to understand developments in trade theory over 
recent decades and how they relate to the familiar Armington framework that 
CGE modellers have been using since the 1970s. However, in discussing what we 
have been doing with other CGE modellers it became apparent that the paper 
might have broader appeal. Modern trade theory is difficult for applied 
economists to absorb in a limited amount of time. While we would like to 
describe the paper as “modern trade theory made easy”, that would set up false 
expectations. Rather, we can describe the paper as modern trade theory made 
accessible to CGE modellers who are prepared to struggle over some new 
concepts and follow the associated rather tedious algebra.  

The currently dominant form of trade-oriented CGE modelling started with 
the ORANI model of Australia1 and the Michigan world model2 which adopted 
the Armington (1969) idea of treating imported and domestic varieties of goods 
in the same classification as imperfect substitutes. The Armington specification 
now underlies the majority of practical policy-oriented CGE models. However its 
theoretical basis is unattractive: it implies that Japan produces a single variety of 
cars which is an imperfect substitute for the single variety produced in Germany. 
Since the 1980s trade theorists have been working on models in which varieties 
are distinguished by firms rather than countries. Land-mark models in this 
literature are Krugman (1980) and Melitz (2003). This paper shows how the 
Armington, Krugman and Melitz models are all special versions of a basic model 
which we call the Armington-Krugman-Melitz Encompassing model or the 
AKME model. Our approach is inspired by Balistreri and Rutherford (2013) who 
set out stylized versions of the three models. In their exposition, Balistreri and 
Rutherford develop each model separately. We draw out connections between 
the three models by developing them sequentially as special cases of the AKME 
model. The Armington model is derived by imposing strong assumptions on the 
AKME model. Some of these assumptions are relaxed to derive the Krugman 
model. Further relaxations are made to derive the Melitz model.  

In the AKME model, widgets are produced in each country s by an industry 
containing Ns firms. Consumers in country d treat widgets from different firms 

                                                            
1  Dixon et al. (1977, 1982). 
2  Deardorff et al. (1977). 
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around the world as imperfect substitutes. The widget industry in each country s 
earns zero pure profits. In producing and selling widgets, firms in country s 
incur three types of costs: variable costs that are proportional to output; fixed 
setup costs (Hs); and a fixed cost in selling to consumers in country d (Fsd). The 
fixed costs are the same for all firms in country s.  

In the Armington model, the two types of fixed costs are zero. Armington’s 
firms in country s have identical productivity and behave in a purely competitive 
manner: that is they perceive the elasticity of demand for their product as ∞. 
With competitive behaviour and with costs proportional to output, profits for 
each firm are automatically zero. The number of firms in country s is fixed 
exogenously. Output variations for the industry are accommodated by output 
variations for the firms.  

In the Krugman model, there are non-zero setup costs, Hs > 0, but zero fixed 
costs on each trade link, Fsd = 0. Krugman’s firms are monopolistically 
competitive: their perceived elasticity of demand for their product is the actual 
elasticity which is finite. All widget firms in country s have the same 
productivity. The number of firms in country s adjusts endogenously as part of 
the mechanism of achieving zero pure profits.  

In the Melitz model, both types of fixed costs are non-zero. As for Krugman, 
firms are monopolistically competitive, correctly perceiving the elasticity of 
demand for their product. In a major departure from Armington and Krugman, 
Melitz allows for productivity variation across firms in country s. As in 
Krugman, the number of firms in country s adjusts endogenously to achieve 
industry-wide zero pure profits. Whereas in Armington and Krugman, all firms 
in country s sell on all trade links, in Melitz only high productivity firms can sell 
on trade links for which there are high fixed costs (large values for Fsd). 

The paper is organized as follows. Section 2 sets out the AKME model and 
then derives the Armington, Krugman and Melitz models as special cases. 
Section 3 investigates the optimality properties of an equilibrium in the Melitz 
model. We demonstrate that in the absence of tariffs, the market equilibrium 
described by Melitz is cost minimizing, that is the world widget industry 
minimizes the costs of satisfying given widget demands in each country. Section 
4 describes Balistreri and Rutherford’s (2013) decomposition of a Melitz general 
equilibrium model into a set of Melitz single sector models and an Armington 
general equilibrium model. Balistreri and Rutherford see this decomposition as 
being valuable in computing solutions for Melitz general equilibrium models. 
We see it as being important for interpreting Melitz results. Section 5 shows how 
parameters for Melitz-style models can be estimated. Section 6 sets out an 
illustrative numerical general equilibrium model with Melitz sectors. We show 
how Melitz results can be interpreted and how Melitz solutions can be computed 
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directly (without decomposition) via an off-the-shelf application with 
GEMPACK software. Concluding remarks are in section 7. 

2. Armington, Krugman and Melitz as special cases of an encompassing model 

2.1. An encompassing model of trade in 10 equations 

We start by presenting an encompassing 10-equation system that describes 
production, pricing and trade for a particular commodity, say widgets. We refer 
to this as the AKME model: Armington, Krugman, Melitz Encompassing model. 

In AKME, each country’s widget industry is composed of monopolistically 
competitive firms. Each firm has the potential to produce its own variety of 
widget, distinct from widgets produced by other firms. To give itself this 
potential, a firm incurs a fixed setup cost. The firm then faces an additional fixed 
setup cost for every market in which it chooses to operate. The potential markets 
are the domestic market and the market in each other country. After explaining 
the 10-equation system in this subsection, we then show in subsection 2.2 that the 
Armington, Krugman and Melitz models are progressively less restrictive special 
cases. 

The ten equations in the AKME model are: 
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In these equations, 
Ns is the number of firms in country s and gs(Φk) is the proportion of these 
firms that have productivity at level Φk. A firm’s productivity level, 
assumed to be a given constant for each firm, is the number of additional 
units of output generated per additional unit of labour (for simplicity we 
assume that labor is the only input). When we refer to firms in class k in 
country s we mean the set of firms in s that have productivity Φk. The 
number of firms in this class is Φs s kN g ( ) . By Φmin(s,d) we mean the minimum 
value of productivity Φk over all firms operating on the sd-link. Technically 
we do most of the mathematics in this paper as if the possible  productivity 
levels are discrete. This is for ease of exposition.  
Pksd is the price in country d of widgets produced in country s by firms in 
productivity class k. We assume that each class-k firms operating on the sd-
link charges the same price for its variety as each other such firm. This 
assumption is justified because, as we will see, all class-k firms in country s 
are assumed to be identical: they have the same costs and face the same 
demand conditions.  
Ws is the cost of a unit of labor to widget makers in country s. 
Tsd is the power3 of the tariff or possibly transport costs associated with the 
sale of widgets from s to d. Following Melitz, we assume (rather strangely) 
that tariffs are charged on the value of the production-labor used in creating 
imports (excludes fixed costs).  
η is the elasticity of demand (restricted to be <-1) perceived by producers in 
all countries on all their sales.  
Fsd is the fixed cost (measured in units of labor) incurred by a firm in s to 
enable it to set up the export of its variety to d. 
Hs is the fixed cost (measured in units of labor) for every firm in country s, 
even those that don’t produce anything. 

                                                            
3 Power is one plus the rate. 
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S(s,d)  is the set of k labels of  firms that send widgets from s to d. With all 
firms in country s facing the same fixed costs, we can assume that if any 
class-k firm in country s operates on the sd-link then all firms in country s 
with productivity greater than or equal to Φk operate on the sd-link. 
Pd is the average price paid by consumers in d for their widgets from all 
sources. 
γksd is a positive parameter reflecting d’s preference for varieties produced 
by firms in class k in country s relative to other varieties from s. 
dsd is a positive parameter reflecting d’s preference for varieties in general 
from s relative to those from other countries. 
s (restricted to be >1) is the elasticity of substitution between varieties, 
assumed to be the same for all consumers in every country and for any pair 
of varieties wherever sourced.  
Qksd is the quantity of widgets sent from country s to country d by each firm 
in class k (this includes the s-to-s flows). 
Qsd is the effective (or welfare-relevant) quantity of widgets of all varieties 
sent from s to d (a CES aggregate of the Qksds). 
Qd is the total requirement for widgets in d. It can be shown via (2.2)-(2.4) to 
be a CES aggregate [defined in (2.13) below] of the Qsds. 
Pksd is the contribution to the profits of a class-k producer in country s from 
its sales to d. In particular, min(s,d)P  is the contribution of sd-sales to the 

profits of firms with the lowest productivity [Φmin(s,d)] of those on the sd-link.  
Ptots is total profits for firms in country s.  

Ls is the employment in the widget industry in country s. 

Equation (2.1) is an example of the Lerner mark-up rule. If a class-k firm in 
country s perceives that its sales to country d are proportional to ksdPη  and that its 
variable cost per unit of sales in country d is s sd kW T Φ , then to maximize its 
profits it will set its price to country d according to (2.1).4  With η being less than 
-1, the mark-up factor on marginal costs [ / (1 )η +η ] is greater than 1. If firms 
perceive that they are in highly competitive markets [η approaches -∞], then the 
mark-up factor is close to 1, that is prices are close to marginal costs. On the other 
hand, if firms perceive that they have significant market power [η close to -1], 
then the mark-up factor is large and prices will be considerably greater than 
marginal costs.  

                                                            
4 Equation (2.1) applies to varieties that are actually sold from s to d, those in the set 
S(s,d).  As to be discussed later, these are the varieties for which non-negative profits can 
be generated. 
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Equation (2.2) defines the average price (Pd) of widgets in country d as a CES 
average of the prices of the individual varieties sold in country d (Pksd). Equation 
(2.3) determines the demand in country d for the product of each class-k firm in 
country s. This is proportional to the total demand for widgets in country d (Qd) 
and to a price term which compares the price in d of class-k widgets from s with 
the average price of widgets in country d. The sensitivity of demand for widgets 
from a particular class and country to changes in relative prices is controlled by 
the substitution parameter, s. Equation (2.4) defines the total effective quantity of 
widgets sent from s to d as a CES aggregate of the quantities of each variety sent 
from s to d. Underlying equations (2.2) to (2.4) is a nested CES optimization 
problem. People in country d are viewed as choosing Qsd and Qksd to minimize 
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Equation (2.5) defines profits for a class-k firm in country s from its sales to 
country d as: revenue less variable costs less the fixed costs required to set up 
sales of a variety on the sd-link. Equation (2.6) defines total profits in the widget 
industry in country s as the sum of profits over all flows less fixed costs in 
developing the potential for producing varieties. Equation (2.7) defines total 
employment in the widget industry in country s as the sum of labor used as 
variable inputs and fixed inputs. 

Equation (2.8) defines the set of firms on the sd-link. This is all the firms with 
productivity levels greater than or equal to Φmin(s,d). 

Equation (2.9) imposes zero profits in the widget industry in country s. Via 
equation (2.10) it is assumed that firms with the minimum productivity level on 
the sd-link [Φmin(s,d)] have zero profits on that link. 

In considering the 10-equation system, (2.1) to (2.10), it is reasonable to think 
of Ws, Qd and Tsd as exogenous. In a general equilibrium model, Ws and Qd 
would be endogenous but determined largely independently of the widget 
industry, and Tsd can be thought of a naturally exogenous policy variable. We 
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assume that the technology and demand parameters and the distribution of 
productivities [ s kg ( )Φ ] are given. If, initially, we also take as given the number 
of firms in each country (Ns) and the minimum productivities on each link 
[ min(s,d)Φ ] so that (2.8) can be used to generate S(s,d), then (2.1) to (2.7) can be 

solved recursively: (2.1) generates Pksd; (2.2) generates Pd; and so on through to 
(2.7) which generates Ls. The role of (2.9) and (2.10) is to determine Ns and 

min(s,d)Φ . It is assumed that the number of firms in country s adjusts so that the 

industry earns zero profits and that the number of firms on the sd-link adjusts so 
that the link contributes zero to the profits of the link’s lowest productivity firm. 

2.2. The special assumptions adopted by Armington, Krugman and Melitz 

Equations (2.1) to (2.10) involve variables for individual firms. However, 
practical modelling is done at the industry level, with industries represented by 
aggregate variables (e.g. industry employment) and by variables for a 
representative firm (e.g. the price charged by the representative firm in the 
widget industry in country s). Table 1 shows assumptions adopted by 
Armington, Krugman and Melitz that assist in translating (2.1) to (2.10) into 
systems of equations connecting industry variables. These assumptions are 
largely implicit for Armington who did not start at the firm level but explicit for 
Krugman and Melitz who did start at the firm level.  

As shown in Table 1, there are no fixed costs in the Armington model. 
Krugman recognises a fixed cost for each firm but not an additional fixed cost for 
each trade link. Melitz recognises both types of fixed cost.  

Table 1. Assumptions in the Armington, Krugman and Melitz models. 
 Armington Krugman Melitz 
Fixed costs for a firm to exist, Hs 0 + + 
Fixed costs for entering a trade link, Fsd 0 0 + 

Perceived demand elasticity, η -∞ -s -s 

d’s preference between varieties from s, γksd 1 for all k,s,d 1 for all k,s,d 1 for all k,s,d 

Productivity for firms in s  s firms•Φ ∀  s firms•Φ ∀  
Pareto 

distribution 
No. of firms (or potential varieties), Ns 1 endogenous endogenous 

Fraction of s firms on the sd-link, 
( )

s k
k S s,d

g ( )
∈

Φ∑  1 1 endogenous 

Source: Author calculations. 

For Armington, firms operate as if they have no market power: they price at 
marginal cost. Both Krugman and Melitz assume that firms are aware of the 
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elasticity of demand for their variety implied by (2.3). Consequently they set 
prices by marking up marginal costs by the factor / ( 1)s s− .5   

In all three models, d’s preferences for varieties from s are symmetric, 
implying that γksd has the same value for all k. Without loss in generality, the γ’s 
can be set at 1.  

For Armington and Krugman all firms in country s have the same 
productivity. For Melitz, productivity varies across firms within a country. As 
explained in Appendix A, Melitz sets gs(Φk) so that productivities in country s 
form a Pareto distribution.  

For Armington there is only one variety of widgets produced in each country. 
We can assume that this is produced by one firm.6  For Krugman and Melitz the 
number of firms in country s (that is entities undertaking the setup cost Hs) is 
endogenous.  

For Armington, the widget variety produced in country s is sold in every 
market. Similarly for Krugman, every widget variety produced in s is sold in 
every market. Neither an Armington nor a Krugman firm faces additional fixed 
costs from entering a market. Thus, with constant marginal costs in production 
and with the demand curve for its variety exhibiting a constant elasticity, these 
firms are able to find a price/quantity combination in each market that covers 
costs attributable to that market. By contrast, Melitz firms face an additional 
fixed cost for every market into which they sell. Consequently, they may sell into 
some markets but not others, depending on whether or not they can find a 
price/quantity combination that generates a sufficient margin over variable costs 
to cover the market-specific fixed costs. For some firms there may be no markets 
in which they can cover market-specific fixed costs. These firms will produce 
nothing. So why were they set up?  Melitz assumes that entrepreneurs form 
firms (that is undertake setup costs Hs) before they know what productivity level 
their firm will be able to achieve. Zero production might then be the best they 
can do if their firm turns out to have low productivity. 

For Armington and Krugman, the identity of the representative firm for the 
widget industry in country s is straightforward. Any firm will do because widget 
firms in country s are identical in all salient respects: they face identical demand 
                                                            
5  This factor is greater than 1: recall that s >1.  Also note that in using (2.3) to calculate 
country d’s demand elasticity for a variety produced by a class-k firm in country s, we 
ignore the effect of changes in Pksd on Pd.   
6  Our assumption that each variety is produced by only one firm means that for 
Armington there is only one widget firm in each country.  This is not a limiting 
assumption.  It would be acceptable in the Armington framework to assume that there 
are many firms in country s all producing the same variety.  With no fixed costs, the 
number of firms involved in the production of country s’s single variety is indeterminate.   
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conditions and have the same productivity. The first column of Table 2 sets out 
the AKME equations, renumbered as (T2.1) to (T2.10). Then the second and third 
columns show the results of applying the Armington and Krugman assumptions 
from Table 1. The dot subscript denotes the representative firm.  

The Armington and Krugman industry versions of (T2.1) – (T2.8) differ in 
several ways. The most interesting is the role of Ns in the two versions of (T2.2) 
and (T2.4). With its value at one, Ns does not appear explicitly in the Armington 
versions but it does appear in the Krugman versions. For Krugman, the total 
effective quantity of widgets sent from s to d ( sdQ ) is not simply the quantity sent 
by the representative firm ( sdQ• ) times the number of firms (Ns). Suppose for 
example that s were 5. Then a 1 per cent increase in the number of firms in s with 
no change in the number of widgets sent from s to d per firm would generate a 
1.25 per cent increase in the effective quantity of widgets sent from s to d even 
though the count of widgets on the sd-link has increased by only 1 per cent. How 
does this happen?  Love of variety in country d means that the increase in Qd 
generated by a 1 per cent increase in varieties from s is the same as that 
generated by a 1.25 per cent increase in d’s consumption of all of the original 
varieties from s. Correspondingly, an increase in Ns reduces the cost per unit (Pd) 
to country d of satisfying any given widget requirement (Qd) even without a 
change in the price of any variety. An increase in varieties allows d to fulfil its 
widget requirements with less physical units of widgets and therefore lower 
costs.  

Other differences between Armington and Krugman brought out in Table 2 
concern mark-ups and profits. Krugman’s representative firm in country s sets 
prices by marking up marginal costs whereas Armington’s representative firm 
prices at marginal cost in all markets. Profits of all firms in country s on all links 
and of the industry are automatically zero for Armington, implied by the pricing 
and technology assumptions. Consequently, we have marked (T2.9) and (T2.10) 
in the Armington column of Table 2 as not required. Zero industry profits is an 
additional assumption for Krugman, not implied by the Krugman versions of 
equations (T2.1) – (T2.8). For this reason, (T2.9) is explicitly included in the 
Krugman model and, as mentioned in subsection 2.1, can be thought of as 
determining Ns for all s. On the other hand, (T2.10) is omitted. It is not applicable 
in the Krugman model. With all firms in country s having the same productivity 
[ •Φ s ], all firms receive a positive contribution to their profits from every link. 
These positive contributions are just sufficient to offset the fixed costs of setting 
up a firm, WsHs.  

Before we can derive industry versions of (T2.1) – (T2.10) for Melitz, we need 
to provide an explicit definition for a firm to represent those that send widgets 
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from s to d. Melitz adopts a rather abstract definition in which this is a firm that 
has the average productivity ( sd•Φ ) over all firms on the sd-link. Average 
productivity is specified as a CES average of Φk over all k∈S(s,d) with the 
“substitution” parameter being s-1: why CES?, why s-1?  Here we provide more 
intuition. 

We define the representative sd-firm as one which employs the average 
number of production workers, sdLPROD• , to service the sd-link. This is given by  

 
s s k ksd

k S(s,d)
sd

sd

N g ( )LPROD
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N
∈
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where Nsd is the number of firms that operate on the sd-link and 
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Under the assumption that all the g’s are one, equations (T2.1) and (T2.3) from 
the AKME model imply that  
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where k and   are any pair of firms in country s operating on the sd-link. Now 
from (2.15) we obtain  
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where sd•Φ is the productivity of any sd-firm that employs sdLPROD•  production 
workers to service the sd-link. Finally, we substitute from (2.18) into (2.14). This 
gives  
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which is Melitz’ definition of the productivity of the representative firm on the  
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Table 2. Eliminating firms from the general equation system: deriving the Armington, Krugman and Melitz models. 
 AKME 10-equation system Armington Krugman Melitz 

(T2.1) s sd
ksd

k

W
P

1
 Τ  η

=   Φ + η          k∈S(s,d) 

s sd
sd

s

W
P•

•

 Τ
=  Φ   

s sd
sd

s

W
P

1•
•

 Τ s =   Φ s−    

s sd
sd

sd

W
P

1•
•

 Τ s =   Φ s−    

(T2.2) ( )
( )1 1

1
d s s k sd ksd ksd

s k S(s,d)
P N g ( ) P

−s
s −s

∈

 
= Φ d g 
 
∑ ∑

 

( )
1

1
1

d sd sd
s

P P
−s

s −s
•

 = d 
 
∑

 

( )
1

1
1

d s sd sd
s

P N P
−s

s −s
•

 = d 
 
∑

 

( )
1

1
1

d sd sd sd
s

P N P
−s

s −s
•

 = d 
 
∑

 

(T2.3) ( ) d
ksd d sd ksd

ksd

P
Q Q

P

s
s  

= d g  
    k∈S(s,d) 

d
sd d sd

sd

PQ Q
P

s

s
•

•

 
= d  

   

d
sd d sd

sd

PQ Q
P

s

s
•

•

 
= d  

   

d
sd d sd

sd

PQ Q
P

s

s
•

•

 
= d  

   

(T2.4) ( )
( )1

1
sd s s k ksd ksd

k S(s,d)
Q N g ( ) Q

s s−

s− s

∈

 
= Φ g 
 
∑

                                       
sd sdQ Q•=  

( )1
sd s sdQ N Qs s−

•=  
( )1

sd sd sdQ N Qs s−
•=  

(T2.5) s sd
ksd ksd ksd ksd sd s

k

W
P Q Q F W , k S(s,d)

 Τ
P = − − ∈ Φ   

s sd
sd sd sd

s

W
P Q• • •

•

 Τ
P = − Φ   

s sd
sd sd sd

s

W
P Q• • •

•

 Τ
P = − Φ   

s sd
sd sd sd sd s

sd

W
P Q F W• • •

•

 Τ
P = − − Φ   

(T2.6) s s s k ksd s s s
d k S(s,d)

tot N g ( ) N H W
∈

P = Φ P −∑ ∑
 

s sd
d

tot •P = P∑
 

s s sd s s s
d

tot N N H W•P = P −∑
 

s sd sd s s s
d

tot N N H W•P = P −∑
 

(T2.7) 
( )

ksd
s s s k

d k S(s,d) k

s s k sd s s
d k S(s,d)

QL N g ( )

N g F N H
∈

∈

= Φ +
Φ

Φ +

∑ ∑

∑ ∑
 

sd
s

d s

Q
L

•

=
Φ∑

 

s sd
s s s

d s

N Q
L N H•

•

= +
Φ∑

 

sd sd
s sd sd s s

d dsd

N Q
L N F N H•

•

= + +
Φ∑ ∑

 

(T2.8) { }k min(s,d)S(s,d) k := Φ ≥ Φ
 S(s,d) all firms=  S(s,d) all firms=  ( )sd s min(s,d)N N *

−α
= Φ

 
(T2.9) stot 0P =  

Not required 
stot 0P =  stot 0P =  

(T2.10) 
min(s,d) s0P =  

Not required Not applicable 

( )
s sd

min(s,d) sd s
min(s,d)

W T1 Q F W 0
1
 

− =  s − Φ   
(T2.11) 

Additional equations to tie down sd•Φ  and min(s,d)Q  in the Melitz model 
sd min(s,d)•Φ = βΦ  

(T2.12) min(s,d) sdQ Q / s
•= β  

Source: Author calculations. 
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sd link as a CES average of kΦ  over all k∈S(s,d) with the “substitution” 
parameter being s-1. Equation (2.19) establishes that our definition, (2.14), of the 
representative sd-firm identifies the same firm as Melitz’ definition. 

With the representative firm on the sd-link identified by (2.14) or equivalently 
by (2.19) we can derive the Melitz versions of (T2.1) – (T2.10). These are shown in 
the final column of Table 2. 

On examining the Melitz versions of (T2.1) – (T2.7), it can be seen that they 
define relationships between industry variables as though every firm on the sd-
link has the same productivity ( sd•Φ ) as the representative firm. While this is 
obviously legitimate for Armington and Krugman, we cannot avoid a little 
algebra to show that it works for Melitz. This is set out in Appendix A. Apart 
from the inclusion of link-specific fixed costs (Fsd) and the use of link-specific 
productivities ( sd•Φ instead of s•Φ ) and link-specific numbers of firms (Nsd 
instead of Ns), the Melitz versions of (T2.1) to (T2.7) are the same as the Krugman 
versions. 

The Melitz version of (T2.8) relies on Melitz’ Pareto specification of the 
distribution of productivities. With this distribution, the fraction of firms whose 
productivity is greater than any given level Φmin equals min

−αΦ  where α is a 
positive parameter (details are in Appendix A). Thus in the Melitz column of 
Table 2, we capture what we need to know about S(s,d) by recognizing that the 
proportion of productivities greater than Φmin(s,d), which is the same as the 
proportion of country s firms on the sd-link, is given by  

 
( )sd

min(s,d)
s

N
N

−α
= Φ      . (2.20) 

As for Krugman, Melitz uses (T2.9) to tie down the number of firms (Ns) in 
country s. For the Melitz version of (T2.10) we have explicitly spelled out profits 
on the sd-link for the lowest productivity firm ( min(s,d)P ) and equated this to 

zero. As mentioned earlier, the role of this equation is to determine Φmin(s,d). 
However, we still have two loose ends: Qmin(s,d) introduced in (T2.10) as the 
volume of sales on the sd-link by the link’s lowest productivity firm; and sd•Φ  
the average productivity of firms on the sd-link. These loose ends are tied up by 
(T2.11) and (T2.12). Equation (T2.11) uses a property of the Pareto distribution 
(discussed in Appendix A) that the average over all productivities greater than 
any given level is proportional to that level. This leads to (T2.11) where β is a 
positive parameter. In (T2.12), Qmin(s,d) is specified by using (T2.11) and (2.16) with 
k and   being firms having average ( sd•Φ ) and minimum (Φmin(s,d)) productivity 
on the sd-link. 
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2.3. Computational completeness of the Armington, Krugman and Melitz models in 
Table 2 

In this subsection we briefly review the Armington, Krugman and Melitz 
models in Table 2 with a view to deciding whether they are likely to be sufficient 
for determining the widget sector’s output, trade and prices for each country.  

For Armington there is no difficulty. Under the most obvious closure (Ws, Qd, 
Tsd exogenous and technology and demand parameters given), the solution of the 
Armington model in Table 2 can be computed recursively: (T2.1) gives sdP• ; (T2.2) 
gives Pd; and so on.  

If Ns is exogenous, the Krugman versions of (T2.1) – (T2.8) can also be solved 
recursively. However, Krugman’s major innovation is to endogenize Ns. He does 
this via (T2.9). This condition has the right dimensions: an extra equation for 
each country s to determine an extra variable Ns. But the addition of (T2.9) 
doesn’t guarantee a solution of the Krugman model. Nevertheless, in most 
empirical settings, we would expect a solution to exist and to be revealed by a 
simple algorithm in which we guess Ns for all s, solve the Krugman version of 
(T2.1) to (T2.7) recursively, check (T2.9), adjust Ns up (down) if Ptots is greater 
(less) than zero, recompute the recursive solution, and continue until (T2.9) is 
satisfied. The reason for expecting success with an algorithm of this nature is that 
in an empirical setting variations in Ns are likely to have a stronger effect on 
profits ( stotP ) in country s than profits in other countries, that is we are likely to 
get a strong diagonal effect7. Thus variations in Ns can be assigned the role of 
guiding us to a situation in which Ptots is zero without unduly interfering with 
the path of Ptotv towards zero for v≠s.  

For the Melitz model in Table 2 we can visualize an algorithmic search for a 
solution starting, as for Krugman, with a guess of Ns for all s. However we also 
need to guess min(s,d)Φ  for all s and d. Then, Nsd, min(s,d)Q , sd•Φ  and sdQ•  can be 

computed from (T2.8) and (T2.10) – (T2.12). Using the guessed values of Ns and 
the computed values for sd•Φ  and Nsd we solve (T2.1) to (T2.7) recursively. Then 
we check (T2.9), raising (lowering) our guess of Ns if Ptots is greater (less) than 
zero. Next we compare sdQ•  values implied by (T2.3) and (T2.12). If sdQ•  in (T2.3) 
is greater (less) than sdQ•  in (T2.12) then we lower (raise) our guess of min(s,d)Φ . 

We expect this adjustment to close the gap between the two values of sdQ•  
because (T2.10) and (T2.12) imply that sdQ•  in (T2.12) is proportional to min(s,d)Φ  

whereas (T2.11) and (T2.1) mean that sdQ•  in (T2.3) is approximately 

proportional to min(s,d)
sΦ . Consequently, with s > 1, an x per cent drop (rise) in 

                                                            
7  This can be guaranteed if consumers in each country d have a strong preference for 
widgets produced in country d.   
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min(s,d)Φ  reduces (increases) sdQ•  in (T2.3) by more than x per cent but reduces 

(increases) sdQ•  in (T2.12) by only x per cent. While the success of such an 
algorithm in a practical computational setting cannot be guaranteed, sketching it 
out is reassuring. It provides a prima facie case that the Melitz versions of (T2.1) – 
(T2.12) are adequate to determine a solution of the widget model. From a 
computational point of view, experience reported in Balistreri and Rutherford 
(2013) suggests to us that, at least for single sector, all of the equations (T2.1) – 
(T2.12) can be tackled simultaneously, obviating the need for an algorithmic 
approach at the sectoral level.  

3. Optimality in the Armington, Krugman and Melitz models8 

Krugman modifies Armington by including fixed setup costs for firms, 
monopolistic competition and prices that exceed marginal costs. Melitz adds 
intra-country variation across firms in productivity and endogenous 
determination of average productivity levels for the firms operating on each 
trade link. An important question is: in the absence of tariffs, do the Krugman 
and Melitz modifications imply that a market economy produces sub-optimal 
outcomes?9  Put another way, are tariffs the only distortions in the Krugman and 
Melitz specifications?   

To answer this question, we will work with the AKME model in Table 2. In 
common with Krugman and Melitz we assume that  

 
η = -s   and   ksd 1 k,s,dg = ∀ . (3.1) 

With (3.1), the AKME model in Table 2 is a generalization of Melitz: we have 
not restricted the distribution function gs(Φk) for productivity levels in country s.  

3.1. The AKME model as a cost-minimizing problem 

We consider a situation in which the worldwide widget industry is run by a 
planner whose objective is to satisfy given widget demands at minimum cost 
(labor costs in production and setup plus tariffs). The planner takes wage and 

                                                            
8  For a more general presentation of the optimality results given here see Dhingra and 
Morrow (2012).   
9 This question is closely related to the one answered by Dixit and Stiglitz (1977) in their 
study of “Monopolistic competition and Optimum Product Diversity”.  In their set up, 
there is no trade or productivity variation across firms.  As discussed in subsection 6.4.3, 
among other things, the Dixit-Stiglitz model is a relatively simple framework for 
establishing an optimality proposition and understanding on what it depends.  Readers 
who want to avoid the messy algebra required for the more general optimality 
propositions presented in this section and Appendix B may find the discussion in 
subsection 6.4.3 a sufficient coverage of optimality propositions.  
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tariff rates as given. We show that if widget technology is in line with AKME 
assumptions, then the planner will choose outputs and trade flows that could 
have been generated by a market economy of the type described by the AKME 
model [AKME equations (T2.1) to (T2.10)]. In short:  

 ⇒Cost minimizing AKME  . (3.2) 

We can’t go quite as strongly the other way round, but we can show that any 
AKME market equilibrium satisfies the first-order optimality conditions for the 
planner’s cost minimizing problem: 

 ⇒AKME First-order optimality conditions for cost minimizing . (3.3) 

If there are no tariffs, then the objective for the planner is minimization of 
total resource (labor) costs. Consequently, proposition (3.2) creates a 
presumption that Armington, Krugman and Melitz are one distortion (tariffs) 
models: in the absence of tariffs we would expect these models to imply that the 
market generates a solution that meets worldwide widget requirements with 
minimum use of resources. We can’t rule out the possibility a priori that an 
AKME model has multiple solutions some of which are suboptimal, although 
satisfying the first-order conditions. However, on the basis of the computational 
literature with which we are familiar (see sections 4 to 6) and on the basis of our 
own admittedly limited experience, we think that the problem of multiple 
solutions is more theoretical than practical.  

The cost-minimizing planner’s problem in (3.2) and (3.3) is:  
choose ksdQ , min(s,d)Φ , sN  to minimize  

 
sd ksd

s s s k sd s s s
s d k S(s,d) sk

T QW N g ( )* F W N H
∈

  
Φ + +  Φ  

∑ ∑ ∑ ∑  (3.4) 

subject to  
 ( 1)/ ( 1)/

d s s k sd ksd
s k S(s,d)

Q N g ( ) Q ds− s s− s

∈

= Φ d ∀∑ ∑  (3.5) 

where 
 { }k min(s,d)S(s,d) k := Φ ≥ Φ   . (3.6) 

Expression (3.4) gives the cost of worldwide widget production and 
distribution including the payment of tariffs. Equation (3.5), which is derived 
from (2.12), (2.13) and (3.1), requires that  exogenous widget demands in country 
d (Qd) are satisfied by a CES aggregate of widgets supplied to d from firms 
throughout the world. Implicit in (3.4) – (3.6) are the assumptions that in the cost-
minimizing solution all class-k firms in country s have the same output and trade 
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volumes and all firms in s with productivity greater than or equal to the 
endogenously determined level Φmin(s,d) trade on the sd-link.10    

The first-order conditions for a solution to (3.4) – (3.6) are that the constraint, 
(3.5) – (3.6), is satisfied and that there exist Λd (Lagrangian multipliers) such that11  

 
sd min(s,d)

s s s min(s,d) sd
min(s,d)

( 1)/
d s s min(s,d) sd min(s,d)

T Q
W N g ( )* F

N g ( ) Q 0 s,ds− s

 
− Φ +  Φ 

+Λ Φ d = ∀

 (3.7) 

 
sd ksd

s s k sd s s
d k S(s,d) k

( 1)/
d s k sd ksd

d k S(s,d)

T QW g ( )* F W H

g ( ) Q 0 s

∈

s− s

∈

 
Φ + +∑ ∑  Φ 
− Λ Φ d = ∀∑ ∑

 (3.8) 

 
1/sd

s s s k d s s k sd ksd
k

T 1W N g ( ) N g ( ) Q 0

s,d & k S(s,d)

− s   s − Φ −Λ Φ d =    Φ s   
∀ ∀ ∈

 (3.9) 

Equations (3.5) to (3.9) are necessary conditions for a solution of the planners cost 
minimizing problem. To demonstrate proposition (3.2), we need to show that 
any set of variable values satisfying (3.5) to (3.9) is consistent with an AKME 
market equilibrium. To demonstrate proposition (3.3), we need to show that an 
AKME equilibrium satisfies (3.5) to (3.9).  

Proving proposition (3.2) 
Let min(s,d)Φ , Ns, Qksd and dΛ  be a solution to (3.5) to (3.9) for given values of 

the exogenous variables Ws, Qd and Tsd. Let Pd and Pksd be defined by  
 1/

d d dP Q sΛ =  (3.10) 

 
s sd

ksd
k

W TP
1

s =  Φ s− 
    . (3.11) 

We also define Qsd, Pksd, Ptots and Ls as in (T2.4) – (T2.7) of the AKME model. 
With these definitions, we show in Appendix B that min(s,d)Φ , Ns, Qksd, Pd, Pksd, 

                                                            
10  If there is a firm in s that is not trading on the sd-link but has productivity greater than 
or equal to Φmin(s,d), then it is easy to show that costs can be reduced by allowing this firm 
to trade on the sd-link and reducing the trade flow for a firm with equal or lower 
productivity.  
11  In deriving this equation we treat Φk as a continuous variable.  
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Qsd, Pksd, Ptots and Ls  satisfies (T2.1) to (T2.10) and is therefore an AKME 
solution.  

Proving proposition (3.3) 
Let min(s,d)Φ , Ns, Qksd, Pd, Pksd, Qsd, Pksd, Ptots and Ls satisfy (T2.1) to (T2.10) for 

given values of the exogenous variables Ws, Qd and Tsd. Define dΛ  by (3.10). We 
show in Appendix B that min(s,d)Φ , Ns, Qksd and dΛ  is a solution to (3.5) to (3.9).  

3.2. Interpretation and significance 

Classical presentations of the optimality of market economies generally rely 
on models in which there are constant or diminishing returns to scale in 
production and a predetermined or exogenous list of commodities that can be 
produced (see for example Debreu, 1959, chapter 6, and Negishi, 1960). The 
propositions outlined in subsection 3.1, which can be thought of as a 
generalization of Dixit and Stiglitz (1977) who show that market optimality can 
also apply in a model in which production processes exhibit increasing returns to 
scale and the range of commodities (varieties) produced is endogenous. Thus we 
have found that the phenomena introduced by Melitz do not necessarily provide 
a case for policy intervention in a market economy.  

Apart from its theoretical and policy implications, we find the equivalence 
between the AKME model and cost minimization to be of interest for three 
reasons.  

First, it implies that the envelope theorem is applicable. This is helpful in 
result interpretation. It means that if we start from a specification in the AKME 
family with zero tariffs, then small movements in exogenous variables will 
display the usual “envelope” effects. For example, small movements in tariffs 
will have zero welfare effects; and small movements in production parameters 
(such as Hs) will have welfare effects reflecting relevant cost shares (the share of 
NsWsHs in world widget costs). We illustrate this computationally in section 6. 

Our second reason for being interested in the AKME cost-minimization 
equivalence is also related to result interpretation. In explaining the effects of 
changes in exogenous variables such as tariffs (Tsd) or fixed costs (Hs, Fsd), it is 
convenient to argue from the point of view of an all-encompassing agent. For 
example, if Hs goes up we would expect an all-encompassing agent to satisfy 
given widget demands (Qd for all d) by reducing output in country s (in response 
to the cost increase) but substituting longer production runs for varieties in s (an 
increase in output per firm and a decrease in the number of firms). This would 
create a need to produce more in other countries particularly via greater variety. 
Thus, in other countries we would expect to see an increase in output with the 
percentage increase in the number of firms exceeding the percentage increase in 
output per firm. The cost minimizing problem (3.4) to (3.6) legitimizes such 
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explanations, based on the behaviour of an all-encompassing optimizing agent, 
as a way of understanding results from AKME multi-agent market models.  

Third, understanding the equivalence between the AKME model and cost 
minimization may be valuable in computations. Balistreri and Rutherford (2013) 
report that solving general equilibrium models with imperfect competition and 
increasing returns to scale can be challenging. [We review their computational 
approach in section 4.]  A potential role for problem (3.2) to (3.4) is as a 
computational framework or at least as a tool for diagnosing computational 
difficulties. If direct solution of AKME equations proves difficult, then 
examination of the optimization problem (3.2) to (3.4) may reveal the reason.  

4. Melitz sectors and Armington general equilibrium: a decomposition 

The difficulty that Balistreri and Rutherford foresee in solving a large scale 
general equilibrium model with Melitz sectors is dimensionality. They point out 
that the Melitz model contains several endogenous country-by-country-by-sector 
variables (e.g. sd•Φ , sdN , min(s,d)Φ  in Table 2 for each Melitz sector) which are 

either absent or exogenous in an Armington model. They are also concerned that 
the increasing-returns-to-scale specification in Melitz (absent in Armington) can 
cause computational problems.  

To overcome the computational problems that they perceive, Balistreri and 
Rutherford suggest a decomposition or “divide and conquer” approach. They 
start by solving each Melitz sector as an independent system of equations based 
on initial guesses of wage rates and overall demand for sectoral product (Ws and 
Qd in Table 2). These Melitz computations generate estimates of sectoral 
productivity and other sectoral variables which are transferred into an 
Armington multi-sectoral general equilibrium model. The Armington model is 
solved to generate estimates of wage rates and overall demand for sectoral 
product which are fed back into the Melitz sectoral computations. A full solution 
of the general equilibrium model with Melitz sectors is obtained when wage 
rates and overall demand variables emerging from the Armington model 
coincide with those which were used in the Melitz sectoral computations.  

Balistreri and Rutherford compute in levels using GAMS software.12  As 
reported in section 6, we have carried out computations using a linear 
percentage-change representation of a Melitz model implemented in GEMPACK 
software.13  On the basis of this experience, we conjecture that full-scale Melitz 
models can be solved relatively easily without resort to decomposition. 
Nevertheless, the Balistreri-Rutherford decomposition method is of theoretical 

                                                            
12  See Bisschop and Meeraus (1982), Brooke et al. (1992) and Horridge et al. (2013). 
13  See Pearson, K.R. (1988), Harrison et al. (2014) , and Horridge et al. (2013).  
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interest: it casts light on the relationship between a traditional Armington model 
and a Melitz model. It is also of practical interest to CGE modellers who use 
GAMS. While Balistreri and Rutherford provide GAMS code for their 
decomposition method, they give only a sketchy account of how it works. In 
subsection 4.1 we fill in the details. Then in subsection 4.2 we focus on the 
theoretical relationship between Armington and Melitz exposed by Balistreri and 
Rutherford. We see this relationship as valuable in understanding simulation 
results from Melitz models.  

4.1. The Balistreri-Rutherford decomposition method for solving general equilibrium 
models with Melitz sectors  

4.1.1. Completing the Melitz general equilibrium model 

Imagine that an extra c subscript for c = 1, …, n is added to all of the variables 
in the Melitz panel of Table 2. These equations then refer to sector/commodity c 
in an n-commodity model. We complete the n-commodity Melitz model by 
adding the equations: 

 
( ) s

sd,c sd,c sd,c sd,c
sd,c

WR T 1 N Q•
•

= −
Φ

 (4.1) 

 
d d d sd,c

c s
GDP W *LTOT R= +∑∑  (4.2) 

 
s s,c

c
LTOT L=∑  (4.3) 

 
d,c d,c d,c dP Q *GDP= µ . (4.4) 

Equation (4.1) defines tax revenue collected by country d on its purchases of c 
from country s. Equation (4.2) defines GDP in country d as the sum of factor 
income (the wagebill in this relatively simple model) plus indirect taxes collected 
by country d. Equation (4.3) defines aggregate employment in country s. 
Equation (4.4) is the consumer demand system in country d. In (4.4), d,cµ  is a 

non-negative parameter with c d,c 1µ =∑ . Thus for simplicity we have assumed 

that the household in country d has a Cobb-Douglas utility function. We also 
assume that the trade balance for each country is zero: aggregate expenditure on 
consumption in d equals d’s GDP. With (4.1) – (4.4) added to the equations in the 
Melitz panel of Table 2, we have a complete general equilibrium model. With 
aggregate employment in each country (LTOTs for all s) treated as exogenous, 
our Melitz general equilibrium model can be solved in principle for all of the 
endogenous sectoral variables in the Melitz equations in Table 2 together with 
Rsd,c, Ws, GDPd, and Qd,s. In performing a solution we need a numeraire (e.g. W1 = 
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1) and correspondingly we need to delete a component from (4.4), e.g. the 
component for the last sector in the last country (Walras law).  

An obvious decomposition approach to solving the Melitz general 
equilibrium model is: guess values for Qd,c and Wd for all c and d; solve the 
Melitz sectoral models for each c, one at a time; use (4.1) to (4.4) to compute the 
values implied by the sectoral models for Rsd,c, GDPd, LTOTs and Qd,c; and then 
check for conflicts between the implied LTOTs values and the exogenously 
known values, and between the implied Qd,c values and those that were assumed 
in the Melitz sectoral models. If there are no conflicts then we have a solution to 
the Melitz general equilibrium model. If there are conflicts, then we must revise 
our guesses of Qd,c and Wd and resolve the Melitz sectoral models. The problem 
with this algorithm is that it does not offer a clear strategy for revising the 
guesses for Qd,c and Wd. The Balisteri-Rutherford algorithm overcomes this 
problem. As we will see, at the end of each iteration in their algorithm an 
Armington calculation suggests new values for Qd,c and Wd to be used as inputs 
to the Melitz sectoral models in the next iteration.  

4.1.2. The Armington auxiliary model and the evaluation of its productivity, 
preference and tariff variables from the Melitz model  

Table 3 sets out the Armington auxiliary model which can be used in the 
Balistreri-Rutherford decomposition algorithm to solve the Melitz general 
equilibrium model defined by the Melitz panel of Table 2 (with commodity 
subscripts added) plus (4.1) – (4.4). In Table 3 we use “A” to denote Armington 
variable. Thus, PA(s,d,c) is the Armington version of the price in country d of 
commodity c from country s.  

The model in Table 3 is an Armington model for the special case, reflected in 
our simplified Melitz model, in which: labor is the only input to production; 
tariffs are the only indirect taxes; and households with Cobb-Douglas 
preferences are the only final demanders. Equation (T3.1) defines prices in terms 
of production costs and tariffs. Equation (T3.2) defines the average price of 
commodity c in country d as a CES function of the prices of commodity c from all 
sources. Equation (T3.3) is country d’s demand function for c from s, derived 
from a CES cost-minimizing problem. Equation (T3.4) imposes market clearing 
for labor in country s. Equation (T3.5) defines tariff revenue collected by country 
d on imports14 of c from s. Equation (T3.6) defines GDP in country d and (T3.7) 
determines overall demand for commodity c in country d under a Cobb-Douglas 
utility function.  
 

 
                                                            
14  We assume TA(s,s,c) = 0 for all c and s. 
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Table 3. The Armington auxiliary model. 
Identifier Equation Dimension Endogenous 

variable 

(T3.1) ( ) ( )
( )

WA(s)*TA s,d,c
PA s,d,c

A s,c
=

Φ  
r2*n ( )PA s,d,c  

(T3.2) ( ) ( )
1

1
1

s
PCA d,c A s,d,c *PA(s,d,c)

−ss −s = d 
 
∑

 
r*n ( )PCA d,c  

(T3.3) ( ) ( ) ( )
( )

PCA d,c
QA s,d,c QCA(d,c)* A s,d,c *

PA s,d,c

s
 

= d  
   

r2*n ( )QA s,d,c  

(T3.4) 
( )

c,d

QA s,d,c
LTOTA(s)

A(s,c)
  =  
Φ  

∑
 

r W(s)  

(T3.5) ( ) ( )( ) ( )QA s,d,c * WA(s)
RA s,d,c TA s,d,c 1 *

A(s,c)
 

= −  
Φ   

r2*n RA(s,d,c)  

(T3.6) ( )
c,s

GDPA(d) WA(d)*LTOTA(d) RA s,d,c= +∑
 

r GDPA(d)  
(T3.7) d,cPCA(d,c)*QCA(d,c) *GDPA(d)= µ

 r*n QCA(d,c)  
 Total 3*r2n+2*r*n+2*r  
Notation:  
PA(s,d,c) is the Armington version of the price in country d of  commodity c from country s; 
WA(s) is the Armington wage rate in country s; 
TA(s,d,c) is the Armington power of the tariff in country d on sales of c from s; 
ΦA(s,c) is the Armington productivity in country s in the production of c; 
PCA(d,c) is the overall Armington price of c in d; 
dA(s,d,c) is country d’s preference variable for commodity c from s; 
QA(s,d,c) is the Armington demand in country d for c from s; 
QCA(d,c) is the Armington overall demand in country d for c; 
s is the elasticity of substitution between varieties of the same commodity; 
LTOTA(s) is the Armington total employment in country s; 
RA(s,d,c) is the Armington tariff revenue collected in d on c from s; 
GDPA(d) is the Armington GDP in country d; 
µd,c is the share of d’s expenditure devoted to commodity c, d,c 0µ > for all c and d,cc

1µ =∑ .  

Source: Author calculations. 

If the values of the productivity, preference and tariff variables [ A(s,c)Φ , 
A(s,d,c)d and TA(s,d,c) ] are known and we treat LTOTAs as an exogenous 

variable, then the auxiliary model can be solved for the endogenous variables 
listed in the right hand panel of Table 3.15  With the model in Table 3 being a 
standard Armington model the solution can be obtained relatively easily.  

If the values of the productivity, preference and tariff variables [ A(s,c)Φ , 
A(s,d,c)d and TA(s,d,c) ] are known and we treat LTOTAs as an exogenous 

                                                            
15  Of course, we would need a numeraire [e.g. WA(1)=1] and we would need to delete 
one equation (Walras law).   
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variable, then the auxiliary model can be solved for the endogenous variables 
listed in the right hand panel of Table 3.16  With the model in Table 3 being a 
standard Armington model the solution can be obtained relatively easily.  

The model in Table 3 is the basis for Balistreri and Rutherford’s Armington 
calculation mentioned at the end of subsection 4.1.1. However, before we can see 
how this works, we need to connect the Melitz general equilibrium model with 
the Armington model. To do this, we add to the Melitz general equilibrium 
model definitions of A(s,c)Φ , A(s,d,c)d and TA(s,d,c) . These definitions strip 
away complicating aspects of the Melitz model including multiple varieties and 
productivities in sector c in each country, fixed costs and imperfect competition. 
They define productivity, preferences, and the power of tariffs as seen through 
the eyes of an Armington modeller. The definitions do not change the Melitz 
general equilibrium model: they simply hang off the end using variable values 
generated in the Melitz model. The definitions are as follows:   

 

( )
sd,c sd,c

d

s,c

Q N
A s,c

L

•

Φ =
∑

 (4.5) 

[Productivity in sector c of country s defined as output divided by employment] 

 

( ) ( )
( ) ( )

( )( )

sd,c

sd,c sd,c sd,c sd,c

sd,c

sd,c sd,c

R
TA s,d,c 1

P Q N R

T 1 * ( 1) /
1

T ( 1) / *(1 T )

• •

= +
−

− s− s
= +

− s− s −

 (4.6) 

 [Power of the tax on s,d,c sales. The power of the tax is 1 plus tax revenue divided by 
pre-tax s,d,c cost. We calculate the pre-tax cost of the s,d,c flow as the value of s,d,c sales 
less taxes on these sales.] 

( )

( ) ( ) ( )
( )

1

ssd,c sd,c sd,c sd,c

s

d,c td,c td,c td,c
t

d,c

A s,d,c

W *TA s,d,cP Q N R
A s,c * A s,cW *

Q P Q N

Q

s
• •

• •

d =

 
   −  Φ    Φ   
                

  

∑
 (4.7) 

                                                            
16  Of course, we would need a numeraire [e.g. WA(1)=1] and we would need to delete 
one equation (Walras law).   
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[Defines the preference variable for good c from country s in country d’s CES composite 
for good c from all sources. Equation (4.7) can be understood as a rearrangement of the 
demand function for s,d,c set out in (T2.3) and (T2.4) of the Armington panel of Table 2. 
The numerator in the first fraction on the RHS of (4.7) is our Armington measure of the 
quantity of the s,d,c flow, i.e. labor productivity times labor input (which is the only 
input). The numerator in the second fraction is our Armington measure of the purchasers 
price in region d of commodity c from s, i.e. the wage rate in s inflated by the power of the 
tariff and deflated by productivity. The denominator in the second fraction is the average 
purchasers price of commodity c in country d, i.e. the total value of purchases of c in d 
divided by total quantity .] 

4.1.3. The Balistreri-Rutherford algorithm 

We now have enough apparatus to set out the Balistreri-Rutherford 
algorithm, as follows:   

• Guess values for Qd,c and Wd for all d and c. 
• Solve the Melitz sectoral models [Melitz panel of Table 2 plus 

(4.1)] for each c, one at a time. 
• Evaluate the Armington productivity, tariff and preference 

variables recursively  using (4.5), (4.6) and (4.7). 
• Solve the Armington auxiliary model in Table 3 with A(s,c)Φ , 

TA(s,c) and dA(s,d,c) set according to the values found in step 3 
and LTOTA(s) treated as an exogenous variable set at the level 
required in the Melitz general equilibrium.  

• Compare the values for QCA(d,c) and WA(d) for all d and c 
generated at step 4 with the guesses of Qd,c and Wd at step 1.  

• If there are differences at step 5, return to step 1 and revise the 
guesses. Possible revision rules include:

(1,n 1) (1,n) (4,n) (1,n)
d,c d,c d,cQ Q * QCA(d,c) Q+  = + ε −   and 
(1,n 1) (1,n) (4,n) (1,n)
d d dW W * WA(d) W+  = + ε −   

where the superscript (1,n) denotes guess used at step 1 in the nth 
iteration, the superscript (4,n) denotes value emerging from step 4 
in the nth iteration, and ε is a parameter between 0 and 1. 

If there are no differences at step 5 (or the differences are sufficiently small), 
then the algorithm terminates. In this case, as shown in Appendix C, we have 
found a solution to the Melitz general equilibrium model. This consists of: (a) the 
values of the Melitz variables found at step 2; (b) the Qd,c and Wd values guessed 
in step 1 (and confirmed in step 5); and (c) the values for GDPd that can be 
computed from (4.2). 
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4.2. The Armington auxiliary model: a tool for interpreting Melitz results  

CGE modellers around the world have nearly 40 years experience in 
interpreting results from models with Armington specifications of international 
trade. This experience includes understanding the effects in an Armington 
framework of changes in tariffs [TA(s,c)], changes in productivity [ A(s,c)Φ ] and 
changes in preferences [dA(s,d,c)]. The Balisteri-Rutherford decomposition 
makes this experience relevant in interpreting results from a Melitz general 
equilibrium model. Melitz results are equivalent to Armington results with extra 
shocks to productivity and preferences. For example, the effects of a tariff change 
under Melitz can be interpreted as the combined effects of three sets of shocks 
under Armington: the tariff shock and shocks to productivity and preferences. 
We illustrate this idea in section 6.  

5. Calibration 

Trade models with heterogeneous firms such as the Melitz model are 
attractive because they gel with findings from microeconomic studies. As 
explained by Balistreri and Rutherford (2013), micro studies show considerable 
diversity within industries in firm size and productivity. Consistent with the 
Melitz theory, micro studies typically show that only high-productivity, large 
firms have significant exports, and unlike models in which all firms in the 
country-s widget industry have equal productivity, models with heterogeneous 
firms offer the possibility of explaining trade-related changes in industry 
productivity via reallocation of resources between firms.  

But how can we put worthwhile numbers to a heterogeneous-firm 
specification within a CGE model?  In this section we explain the 
estimation/calibration method devised by Balistreri et al. (2011). Their method 
refers to sectors. However in explaining the method we will omit the 
sectoral/commodity subscript c.  

The key to estimating/calibrating for a heterogeneous-firm CGE model is not 
to take the theory too literally. Consider the Melitz model. It relies on stark 
assumptions: the widget industry in each country is monopolistically 
competitive; each firm produces a single unique variety of widget; each widget 
firm throughout the world faces the same elasticity of demand, s, in every 
market; s is unresponsive to the number of available widget varieties – it is 
treated as a parameter implying potentially strong “love-of-variety” effects; in 
every country, the marginal productivities, Φk, of widget producers form a 
simple one-parameter distribution (a Pareto distribution); and every widget firm 
in country s faces the same fixed cost, WsHs to enter the widget industry and the 
same fixed cost, WsFsd, to set up trade with country d.  
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If we try to implement such a theory in a literal fashion with data on numbers 
of firms and firm-specific costs split into variable costs and different types of 
fixed costs, then we are likely to become lost in a maze of unsatisfactory data 
compromises. For example, how would we handle multi-product firms?  How 
would we identify fixed costs specific to different trade links?   

By treating the Melitz model as an underlying parable, Balistreri et al. (2011) 
devise a calibration method whereby Melitz sectors can be included in a CGE 
model in a way that is consistent with robust data and does not depend on 
impossible definitional conundrums like deciding how many varieties of 
chemical products are shipped from the U.S. to Japan.17  Thus, it is possible to 
build CGE models that can be used to explore the implications of heterogeneous 
firm theory in the context of observed magnitudes at the industry and country 
level for trade, output, demands and employment. 

5.1. Calibrating a Melitz sector in a CGE model: the Balistreri et al. (2011) method 

Balistreri et al. (2011) calibrate a Melitz sector in a CGE model using readily 
available data on trade flows. Their technique starts by accepting a Melitz 
sectoral specification. If for example the accepted specification were the Melitz 
version of (T2.1) to (T2.12) in Table 2, then they would write  

 ( )endoMV f W,T,Q,F,H, , ,= d s α  (5.1) 

where MVendo is the vector of endogenous Melitz sectoral variables consisting of 
sdP• , sd•Φ , sdN , sdQ• , dP , sdQ , sd•P , stotP , sN , sL , min(s,d)Φ  and min(s,d)Q . For a 

model with R countries this list contains 8R2 +4R variables. These can be 
determined from the corresponding number of Melitz equations provided that 
we have values for the arguments on the RHS of (5.1): wage rates (W) in each 
country; powers of tariffs & transport costs18 (T); total requirements for widgets 
(Q); link-specific fixed costs (F); firm set-up costs (H); inter-country preferences 
(d); the substitution elasticity (s); and the Pareto parameter describing the 
distribution of productivity levels across firms (α).19  Next, Balistreri et al. add 
equations determining trade flows:  

                                                            
17 The work by Balistreri et al. described in this section is a leading example of what 
Costinot and Rodriguez-Clare (2013) have in mind when they say “… today’s researchers 
try to use their own model to estimate the key structural parameters necessary for 
counterfactual analysis.  Estimation and computation go hand in hand.” 
18  In earlier sections we portrayed T as referring to only tariffs.  For Balistreri et al.(2011), 
T also encompasses transport margins.   
19  We don’t include β on the RHS of (5.1).  As explained in Appendix A, β can be 
determined from s and α, see (A.7).   
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sd sd sd sdV N P Q• •=  (5.2) 

where Vsd is the landed-duty-paid value of the flow of widgets on the sd-link.20  
With data on trade flows together with data on production costs and demands 
(W and Q in our simplified framework) Balistreri et al. have the basis for 
estimation. They choose values for a selection of the unknown variables and 
parameters (T, F, H, d, s and α) to minimize the gap between observed values for 
trade flows and simulated values from the system (5.1) – (5.2).  

Why only a selection?  With T, F, H, d, s and α we have 3R2 + R + 2 unknowns. 
Equation (5.2) offers only R2 constraints on estimated values. Consequently, 
estimates can be obtained for no more than R2 unknowns, and it is likely that 
meaningful estimates can be obtained for considerably less than R2 unknowns. 
To deal with this problem Balistreri et al. adopt a two-prong strategy: they make 
assumptions concerning some unknowns and reduce the dimensions of others by 
imposing structures.  

For d, they assume a matrix of 1’s. Thus they rule out inter-country preference 
biases. By contrast, inter-country preference biases play a dominant role in the 
Armington model in determining the pattern of trade flows. For Balistreri et al. 
(and Melitz), it is differences in link-specific fixed trade costs (the structure of the 
F matrix) that are used to fill in the explanation of trade patterns beyond what 
can be attributed to production costs, tariffs & transport costs and total 
requirements.  

For s, Balistreri et al. adopt a value from the literature. These elasticities have 
been the subject of econometric study since the pioneering work in Australia of 
Alaouze and colleagues in the 1970s.21  Thus, in the context of estimating 
parameters for a Melitz model, it seemed reasonable to Balistreri et al. not to use 
a degree of freedom on s.22  Further, we suspect that Balistreri et al.’s data 
(focused mainly on values of trade flows) does not provide the sharp definition of 
differences across widget prices ( sdP• ) required for convincing estimation of 
substitution elasticities.  

For H, Balistreri et al. adopt an arbitrary vector of equal values, Hs equals 2 for 
all s. The value 2 seems a little odd, but it is harmless. The scale of the H vector 
                                                            
20  Equation (5.2) is intuitively appealing.  However, it needs to be justified.  At the end of 
Appendix A we derive it under Melitz assumptions.   
21  See Alaouze (1976) & (1977) and Alaouze et al. (1977) which produced estimates of 
Armington  elasticities (s) for about 50 commodities.  These papers are summarized in 
Dixon et al. (1982, section 29.1).  Subsequent studies and surveys include Dimaranan and 
McDougall (2002), Head and Ries, (2001), Hertel et al. (2007), McDaniel and Balistreri 
(2003), Shomos (2005) and Zhang and Verikios (2003). 
22  Against this, the results in subsection 6.4 suggest that s values appropriate in the 
context of an Armington model may not be appropriate in the context of a Melitz model.   
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affects the scale that should be chosen for the F matrix but does not affect the 
implications of the Melitz model for anything that is potentially observable such 
as expenditure levels on widgets, values of trade flows, employment levels and 
the division of costs between fixed and variable. This can be checked by working 
through the Melitz versions of (T2.1) – (T2.12). Assume that we have an initial 
solution of these equations. Now double Hs and Fsd for all s and d. Then we can 
immediately generate a new solution in which: the essentially arbitrary numbers 
of firms (Ns and Nsd) are halved; the units for measuring widget requirements are 
changed so that average widget prices (Pd for all d) are multiplied by 1 ( 1)2 s−  
while widget quantities (Qd and Qsd for all d and s) are multiplied by 1 (1 )2 −s  
leaving expenditure (PdQd) on widgets unaffected; and output and profits ( sdQ• ,

min(s,d)Q , sd•P ) of representative firms are doubled but their productivity and 

prices ( sd•Φ , min(s,d)Φ , sdP• ) are unaffected, as are industry profits and employment 

( stotP , sL  for all s). While an arbitrary choice for the scale of H is harmless, the 
assumption of uniformity across countries is restrictive. What the argument in 
this paragraph justifies is a free setting of the H for one country, but not the 
assumption that the H’s are equal across countries.  

For T, Balistreri et al. impose the structure  
 ( )sd sd sdT 1 D s,dθ= + τ ∀   (5.3) 

where  
 τsd is the tariff rate applying to widget flows from s to d;  
 Dsd is a measure of distance between countries s and d, used to represent 

transport costs for widgets in international and intra-national trade23  24 ; 
and 

 θ is a parameter representing the elasticity of transport margins with 
respect to distance. 

In the context of (T2.1), equation (5.3) implies that tariffs are charged on 
marginal production costs inflated by transport costs. This is probably not the 
right base for tariffs, and it is not clear that transport costs should be modelled as 
proportional to a value ( s sd sd sdW Q N /• •Φ ) rather than a volume. However, these 
are only minor quibbles. With data on τsd and Dsd Balistreri et al. use (5.3) to 
reduce the problem of estimating the R2 components of T to a problem of 
estimating a single parameter, θ.  

                                                            
23  Normalization of D is required so that simulated total worldwide transport costs for 
trade in widgets is compatible with data on these costs.   
24  As an alternative to using distance, Balistreri et al. could have used more directly 
relevant data on transport costs derived from differences between fob and cif prices, see 
for example Gehlhar (1998).  
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For F, Balistreri et al. impose the structure: 
 

s d
sd

s

Out In for s d
F

Out for s d      .

+ ≠= 
=

 (5.4) 

This structure disaggregates setup costs on the sd-link into two parts. First, 
there are costs (Outs) required for firms in country s to setup in any market. Then 
there are additional setup costs (Ind) required only by foreign firms before they 
can make sales to country d. In part, these latter costs can be visualized as 
expenditures to overcome non-tariff trade barriers. While the theoretical validity 
of (5.4) may be questionable, the econometric payoff is clear. It reduces the 
dimensions of the F parameter space from R2 to 2R.  

The adoption of assumed values for d, s and H, and the imposition of 
structures for T and F gives Balistreri et al. a manageable econometric task. The 
initial list of 3R2 + R + 2 unknowns has been condensed to 2R +2: Outs, Ind, θ and 
α. Balistreri et al. estimated these unknowns using manufacturing trade data for 
2001 for the world divided into 12 regions. They obtained interpretable and 
impressively precise estimates for θ and α. Their estimates of Outs and Ind seem 
problematic. However, econometric efforts in this area are in their infancy. 
Improvements can be expected as econometricians develop the Balistreri 
framework. Obvious directions for this work are: the use of time-series data 
rather than data for a single year; the use of data for a wider range of variables 
(e.g. prices and quantities for trade flows, not just values); refinement of the 
commodity dimension (e.g. 2- or 3-digit industries rather than a 1-digit sector 
such as manufacturing); refinement of the regional dimension (avoiding the use 
of aggregates such as Rest-of-Asia, Korea & Taiwan, etc); and the use of more 
compelling theoretical restrictions (e.g. relaxation of the assumption of no home 
bias in preferences).  

6. Illustrative GEMPACK computations in a general equilibrium model with 
Melitz sectors 

6.1. Setting up and solving a Melitz CGE model 

In this section we report results for simulations with an illustrative Melitz 
general equilibrium model (MelitzGE). The computations were performed using 
the GEMPACK code presented with annotations in Appendix F. In computing 
solutions of an equation system that describes a general equilibrium, GEMPACK 
starts from an initial solution and then uses a system of linear equations in 
percentage changes or changes in variables to calculate the movements in the 
endogenous variables away from their initial values in response to movements in 
exogenous variables away from their initial values. To fully capture non-
linearities in the equation system, GEMPACK computations are conducted in a 
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series of steps. In the first step, the exogenous variables are moved a fraction of 
the way along the path from their initial values to their desired final values. This 
gives a new solution for the endogenous variables which is relatively free of 
linearization error provided that the step size (fraction) is not too big. In the 
second step GEMPACK calculates the effects on this new solution of another 
movement in the exogenous variables along the path towards the desired final 
values. With the movements in the exogenous variables broken into a sufficient 
number of steps, GEMPACK arrives at an accurate solution for the endogenous 
variables at the given final values of the exogenous variables. 25    

The code in Appendix F is for an n-sector, r-country version of the MelitzGE 
model specified by the Melitz versions of (T2.1) – (T2.12) and by (4.1) – (4.4). The 
code also includes linear percentage-change versions of: equations (4.5), (4.6) and 
(4.7) defining Armington variables for productivity, tariff powers and 
preferences; equations (T3.1) to (T3.7) specifying the Armington auxiliary model; 
and various other equations defining variables that will be helpful in analysing 
results. The code is set up for a special case in which the n*r sectors are identical 
in the initial solution, facing identical demand and cost conditions. Initially, for 
all sectors/commodities (c) and countries (s or d): Ws = 1 (same wage rate in all 
countries); Tsd,c = 1 (zero tariffs); Hs,c = H (same fixed setup costs in all sectors); 

1
s,cg ( ) , 1−α−Φ = αΦ Φ ≥ (same Pareto distribution of productivities in all sectors); 

dsd,c = 1 (no country preference biases in any sector); d,c 1 nµ = (equal expenditure 

shares on all commodities); the substitution elasticity s is the same across all 
commodities; and Ns,c = Qd,c = 1 (two harmless normalizations26). The countries 
can be thought of as located at equal distances on the circumference of a circle 
(Figure 1), with set up costs, Fsd,c, being determined by the shortest distance on 
the circle between s and d. Following Balistreri and Rutherford (2013), we set α at 
4.6 and s at 3.8 giving β = 1.398 [see (A.7)]. Then, in the initial situation, we 
assume that a firm k needs a productivity level of at least 1.1 ( k 1.1Φ ≥ ) for it to 
operate in its own country (non-zero sales on the ss-link). At the other extreme, 
we assume that the minimum productivity level required for a firm to operate on 
all links is 2. 

                                                            
25  References for GEMPACK software are given in footnote 13.  The original description 
of the theory underlying the GEMPACK computing method is in Dixon et al. (1982,  
section 8 and chapter 5).  For a more recent exposition see Dixon et al. (2013, section 2.4).  
26  Doubling the initial value of Qd,c affects the scale that should be chosen for the initial 
value of the vector dsd,c for all s to be consistent with observed values for trade flows, 
expenditure, etc, but does not affect the implications of the Melitz model for anything 
that is potentially observable.  Following  similar arguments to that in section 5.1, it can 
be shown that doubling the initial values of Ns,c can be accommodated by scaling Hs,c and 
Fsd.c with no implications for anything that is potentially observable.   
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Figure 1. Location of countries 1 to r. 

Source: Author calculations. 

With these assumptions and with the countries numbered from 1 to r, we 
compute initial values for Φmin(s,d,c) according to: 

 ( ) { }min(s,d,c)

2.0 1.1
1.1 *2*MIN s d , r s d s,d,c.

r
−

Φ = + − − − ∀  (6.1) 

Under (6.1) the Φmin(s,d,c)’s for country s are spread evenly from 1.1 (for d equal to 
s) to 2 (for the country or countries furthest from s on the circle). With the initial 
values of Φ min set in this way we determined the initial values recursively for: 

sd,c•Φ  via (T2.11); Nsd,c via (T2.8); sd,cP•  via (T2.1); Pd,c via (T2.2); sd,cQ•  via (T2.3); 

Qmin(s,d,c) via (T2.12); Fsd,c via (T2.10); Qsd,c via (T2.4); sd,c•P  via (T2.5); Hs,c via (T2.6) 

and (T2.9);27 and Ls,c via (T2.7).  

                                                            
27  In the context of our other assumptions concerning the initial solution, Hs,c computed 
from (T2.6) and (T2.9) is the same for all s and c.   
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Identical sectors and countries is a special case. However, we do not use this 
feature to simplify or speed up our calculations. Thus we think that the 
GEMPACK experience reported later in the section is a reasonable guide to how 
the software would perform in an empirically specified model. The most obvious 
qualification is that our illustrative model lacks intermediate inputs. Their 
inclusion increases dimensionality. Nevertheless, available GEMPACK 
experience with empirically specified imperfect competition models suggests 
that intermediate inputs do not cause major computational problems, see for 
example Horridge (1987), Abayasiri-Silva and Horridge (1998), Swaminathan 
and Hertel (1996),and Akgul et al. (2014) .  

While our computations refer to a special case, we think it is reasonably 
representative of a real world situation. In the two country n-commodity case, 
around which most of our discussion is based, the initial solution that we have 
chosen implies for each country s that: exports (and imports) are 25.4 per cent of 
GDP; fixed setup costs ( s s,c s,cc

W H N∑ ) are 16 per cent of GDP; and fixed costs 

on trade links ( s sd,c sd,cc d s
W F N

≠∑ ∑ ) are 10 per cent of the fob value of exports.  

In subsections 6.2 to 6.5 we report results from four sets of GEMPACK 
simulations with MelitzGE. The first set, in subsection 6.2, are test simulations 
designed mainly to check the validity of our coding. We also use these 
simulations to demonstrate two points from section 3: intuition gained from 
envelope theorems and from thinking of results as reflecting the behaviour of a 
single optimizing agent can be useful in interpreting results. The second set, in 
subsection 6.3, shows that Melitz tariff results can be interpreted as Armington 
tariff results with the addition of shocks to productivity and preferences. The 
third set, in subsection 6.4, investigates further the relationship between tariff 
results in Melitz and Armington models. We find that Melitz results computed 
with the inter-variety substitution elasticity s set at the value x, say, can be 
closely approximated in an Armington model built with the same data as the 
Melitz model but with the Armington elasticity set at a value greater than x. The 
fourth set, in subsection 6.5, demonstrates that GEMPACK solutions for Melitz 
models can be computed directly without decomposition in minimal time, even 
for models with large numbers of countries and Melitz sectors.  

6.2. Test simulations and interpreting results 

6.2.1. Test simulations  

Table 4 contains results from four MelitzGE test simulations. These are 
simulations for which we know the correct results a priori. Test simulations are 
important in applied general equilibrium modelling because they offer the only 
reasonably foolproof way of checking the coding of a model. In addition, 
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designing and thinking about test simulations is often a valuable part of 
understanding a model.  

We conduct the test simulations with a two-country, two-commodity version 
of MelitzGE, that is r = n = 2. The closure (set of exogenous variables) is the same 
in all four simulations. The exogenous variables are: the average wage rate across 
countries, which acts as the numeraire; aggregate employment in each country; 
consumer preferences over sources of commodity c [dsd,c]; tariff rates; setup costs 

 Table 4. Test simulations with MelitzGE (percentage changes). 
Selected variables Nominal 

homogeneity 
(1) 

Scaling 
fixed costs 

(2) 

Scaling 
consumption 

(3) 

Increased 
scale 
(4) 

Exogenous variables     
World average wage rate 1.0 0.0 0.0 0.0 
Fixed costs , start up & links     
      Hs,1 for all s 0.0 1.0 0.0 0.0 
      Hs,2 for all s 0.0 0.0 0.0 0.0 
      Fsd,1 for all s,d 0.0 1.0 0.0 0.0 
      Fsd,2 for all s,d 0.0 0.0 0.0 0.0 
Preference variables     
      ds2,1 for all s 0.0 0.0 0.73588 0.0 
      All other d’s  0.0 0.0 0.0 0.0 
Employment by country      
      LTOTs for all s   0.0 0.0 0.0 1.0 
Endogenous variables     
Price of composites,  P1,1  1.0 0.35601 0.0 -0.35475 
                                  P1,2 1.0 0.0 0.0 -0.35475 
                                  P2,1 1.0 0.35601 -0.99015 -0.35475 
                                  P2,2 1.0 0.0 0.0 -0.35475 
Typical link prices sd ,cP• for all s,d,c 1.0 0.0 0.0 0.0 

Number of firms,      Nd,1 for all d 0.0 -0.99015 0.0 1.0 
                                  Nd,2 for all d 0.0 0.0 0.0 1.0 
No. firms on link,      Nsd,1 for all s,d 0.0 -0.99015 0.0 1.0 
                                  Nsd,2 for all s,d 0.0 0.0 0.0 1.0 
Employment by commodity  Ls,c for all s,c 0.0 0.0 0.0 1.0 
Consumption by com & country       Q1,1 0.0 -0.35475 0.0 1.35955 
                                                          Q1,2 0.0 0.0 0.0 1.35955 
                                                          Q2,1 0.0 -0.35475 1.0 1.35955 
                                                          Q2,2 0.0 0.0 0.0 1.35955 
Trade by typical firm, sd ,1Q•  for all s,d 0.0 1.0 0.0 0.0 

                                  sd ,2Q•  for all s,d 0.0 0.0 0.0 0.0 

Cons. by com, src, & country sd ,1Q  for all s,d 0.0 -0.35475 0.0 1.35955 

                                              sd ,2Q  for all s,d 0.0 0.0 0.0 1.35955 
Welfare by country                     welfare(1) 0.0 -0.17753 0.0 1.35955 
                                                   welfare(2) 0.0 -0.17753 0.49876 1.35955 
Source: Author calculations. 
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for a firm in each country and for each commodity [Hs,c]; setup costs for trade on 
every link [Fsd,c]; and the Cobb-Douglas preference coefficients [µd,c] 28.  

In the first test simulation we impose a 1 per cent increase in the numeraire, 
the average wage rate across countries. The expected result and the result shown 
in the first column of Table 4 is zero effect on all real variables (quantities) and a 
1 per cent increase in all nominal variables (prices and values).  

In the second test simulation we apply 1 per cent shocks to fixed setup costs 
for firms producing commodity 1 in both countries and to fixed costs for 
commodity 1 on all links (Hd,c and Fsd,c for c=1 and all s and d). As shown in 
column 2 of Table 4, a 1 per cent increase in the H’s and F’s for commodity 1 has 
no effect on observable quantities and values:  

• employment by commodity and country shows zero effect;  
• the price of composite commodity 1 in each country rises by 0.35601 per 

cent offset by a decline in consumption in each country of 0.35475 per 
cent leaving the potentially observable value of consumption of 
commodity 1 in each country unchanged;29 and 

• the number of commodity-1 firms on each link decreases by 0.99015 per 
cent, the price charged by a typical firm on each link is unchanged and 
the quantity it ships increases by 1 per cent, implying zero effect on the 
potentially observable values of commodity-1 trade on each link. 

These results confirm the argument in subsection 5.1 that in calibrating a 
Melitz model (setting parameter values) it is legitimate to assign for each 
commodity an arbitrary value to the H in one country: this merely affects the 
scaling of the H’s for the other countries and all the F’s. It doesn’t affect the fit of 
the model to observable quantities and values. 

As distinct from calibration, in simulation proportionate movements in the 
H’s and F’s matter. For example, column 2 of Table 4 shows that a 1 per cent 
increase in the H’s and F’s for commodity 1 reduces welfare in both countries. 
The percentage change in the welfare of country d arising from a shock is 
measured in MelitzGE by a weighted average of the percentage changes in d’s 
consumption of each commodity (Qd,c, for all c) with the weights being 
expenditure shares. We will return to the welfare effects of changes in H’s and 

                                                            
28  For d= 2 we allowed uniform percentage endogenous adjustment in µd,c across c.  This 
is equivalent to eliminating an equation in accordance with Walras law.      
29  These and other quantitative effects in column 2 of Table 4 can be traced out by 
following the argument in the paragraph before equation (5.3): an x% increase in the H’s 
and F’s for commodity 1 will: move Ns,1 and Nsd,1 to 1/(1+x/100) times their initial values, 
that is reduce them by 100*[1/(1+x/100) -1]% ; move Pd,1 to {1/(1+x/100)}^ 1/(s-1)) times its 
initial values; etc.   
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F’s in the next subsection where we explain the quantitative result in column 2, a 
welfare reduction in each country of 0.17753 per cent. 

The simulation in the third column of Table 4 confirms another calibration 
idea: that the initial consumption quantities of composite commodities (Qd,c for 
all d and c) are essentially arbitrary (see footnote 25). The simulation shows that 
scaling country 2’s preference coefficients for commodity 1 from all sources (ds2,1 
for all s) increases country 2’s consumption of composite commodity 1 (Q2,1) with 
a corresponding reduction in its price (P2,1) and no change in the potentially 
observable value (P2,1*Q2,1).30  Again, calibration should not be confused with 
simulation. In simulation, a uniform percentage increase in ds2,1 over all s 
represents an improved ability in country 2 to turn units of commodity 1 from 
different sources into units of composite commodity 1, and is thus welfare 
enhancing.  

The final simulation in Table 4 shows the effects of a 1 per cent increase in 
employment in both countries. People imbued with constant-return-to-scale 
ideas would expect this simulation to generate a 1 per cent increase in all real 
variables with zero effect on prices. However, as can be seen from column 4 in 
Table 4, consumption of commodities identified by source (Qsd,c for all s, d and c), 
consumption of composite commodities (Qd,c for all d and c) and welfare in both 
countries increase by 1.35955 per cent, and the price of composite commodities 
falls by 0.35475 per cent.31  With one per cent more resources (labor) in both 
countries, MelitzGE shows a 1 per cent increase in the number of firms for each 
commodity (Ns,c) and the number of firms on each trade link (Nsd,c). There is no 
change in the output of typical firms ( sd ,cQ•

). Consequently the count (number of 
widgets) for each commodity on each link increases by 1 per cent. But more firms 
means more varieties, generating a “love-of-variety” benefit (see the discussion 
in subsection 2.1 of love of variety). In the Melitz world, even though country d’s 
count for commodity c from country s increases by 1 per cent, the resulting 
effective consumption in d of c from s (Qsd,c) increases by more than 1 per cent 
(1.35955 per cent), generating a similar percentage increase in d’s consumption of 
composite c. With more varieties, any given demand for a composite commodity 
can be satisfied at lower cost. Thus, Pd,c falls (by 0.35475 per cent) for all d and c. 
                                                            
30  We simulated the effects of a 0.73588% increase in the ds2,1’s.  We chose this number in 
anticipation (confirmed in the simulation) that with s equal to 3.8, Q2,1 would increase by 
1%.  This can be worked out from (T2.2) and (T2.3): scaling the ds2,1’s by 1.01^((s-1)/ s) 
multiplies Q2,1  by the factor of 1.01, multiplies P2,1 by the factor 1/1.01 and changes none 
of the other Melitz variables in Table 2.   
31  The key to this result is (T2.4).  With a 1% increase in employment in all countries there 
is a 1% increase in the number of firms operating on every link.  This multiplies the 
quantity of composite commodity c on the sd link by the factor 1.01^(s/(s-1)).  With s = 
3.8, this factor is 1.0135955.    
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6.2.2. Interpreting results: envelope theorems and an optimizing agent 

In section 3 we demonstrated an equivalence between a Melitz general 
equilibrium model and a cost-minimizing problem and suggested that this may 
be useful in result interpretation. The equivalence indicates that envelope 
theorems and intuition based on single-agent behaviour may be applicable. In 
this subsection we return to simulation 2 in Table 4 to illustrate both these ideas.  

The envelope theorem gives the expectation that a 1 per cent increase in the 
commodity-1 H’s and F’s (as in simulation 2 in Table 4) would reduce welfare by 
an amount equivalent to that from a loss of labor in each country of 1 per cent of 
its total fixed-cost labor for commodity 1. Referring to the data items for 
MelitzGE in Table 5, we see that total fixed-cost labor for commodity 1 in each 
country is 0.24457 units. The loss of 1 per cent of this fixed-cost labor represents a 
loss in total labor in each country of 0.131574 per cent (=100*0.0024457/1.85880). 
In simulation 4 in Table 4, we found that a 1 per cent increase in labor in both 
countries induces, through a variety effect, an increase in welfare of more than 1 
per cent, 1.35955 per cent. Thus we would expect the welfare effect for each 
country in simulation 2 of Table 4 to be approximately -0.17888 per cent (= -
0.131574*1.35955). This is close to the results shown for simulation 2 in the last 
two rows of Table 4.  

Next, we think about the results in column 2 of Table 4 from the point of view 
of a single optimizing agent. With increases in fixed costs, we would expect a 
planner in charge of world-wide commodity-1 production to reduce the number 
of commodity-1 firms and increase output per firm. This is what we see in 
column 2 of Table 4. The number of commodity-1 firms in each country [Nd,1] 
and the number operating on each trade link [Nsd,1] fall by 0.99015 per cent. At 
the same time, the typical commodity-1 firm in each country increases its output 
[ sd ,1Q• ] by 1 per cent. As with any increase in costs, we would expect our planner 
to increase prices and for consumers to reduce demand. Again, this is what we 
see in column 2. The price to consumers per unit of composite commodity 1 [Pd,1] 
rises by 0.35601 per cent and demand [Qd,1] falls by 0.35475 per cent.  

6.3. The effects of a tariff increase in the MelitzGE model  

In this subsection we analyse some MelitzGE results for the effects of 
increases in tariffs. We continue to use the two-country, two-commodity version 
of MelitzGE, with the same exogenous variables as in subsection 6.2: the average 
wage rate across countries, which acts as the numeraire; aggregate employment 
in each country; consumer preferences over sources of commodity c; tariff rates; 
setup costs for a firm in each country and for each commodity; setup costs for 
trade on every link; and the Cobb-Douglas preference coefficients.  
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Table 5. Selected items from the MelitzGE 2-commodity/2-country database 
(the data are the same for both commodities c and both countries s). 

Data item Value 
Wage rate in country s, Ws 1 
Labor requirement for setting up a c-producing  firm in country s, Hs,c 0.14887 
Labor requirements for setting up a c-firm on the sd link, Fsd,c, s = d 0.11065 
                                                                                          Fsd,c, s ≠ d 0.59010 
Number of c firms in country s, Ns,c 1 
Number of c firms operating on the sd link, Nsd,c, s = d 0.64505 
                                                                     Nsd,c, s ≠ d 0.04123 
Total employment in country s, LTOTs 1.85880 
Quantity of labor used in setting up c-firms in country s, Hs,c*Ns,c 0.14887 
Quantity of labor used in establishing c-firms on sd link, Fsd,c*Nsd,c, s = d 0.07137 
                                                                                        Fsd,c*Nsd,c, s ≠ d 0.02433 

Fixed cost labor used by c-firms in country s, 2
s,c s,c sd,c sd,cd 1

H * N F *N
=

+∑  0.24457 

  
Value of GDP 1.85880 
Value of consumption 1.85880 
Value of exports 0.47259 
Value of imports 0.47259 
Source: Author calculations. 

Table 6 reports results for three experiments. In the first, country 2 increases 
its tariffs on all imports from an initial level of zero to 10 per cent, that is T12,c 
increases from 1 to 1.10 for all c. Experiments 2 and 3 give results for the effects 
of the imposition by country 2 of tariff rates of 19 per cent and 50 per cent. 
Following Melitz, in MelitzGE country d’s tariffs on imports from country s are 
charged on production costs in s excluding fixed costs (see section 2). In the 
Armington auxiliary model in Table 3, tariffs are charged on total costs (there is 
no division of costs into production and fixed). The bigger base in Armington 
means that Armington tariff rates calculated in (4.6) are lower than the 
corresponding Melitz tariff rates. As can be seen from Table 6, the increases in 
the powers of country 2’s Armington tariff rates in our three experiments are 
7.180 per cent, 13.333 per cent and 32.558 per cent.  

In explaining the results in Table 6 we focus mainly on the first experiment. 
The imposition of a 10 per cent tariff by country 2 (7.180 percent in Armington 
terms) causes a sharp contraction in trade. The volume of country 1’s exports 
declines by 18.811 per cent and the volume of country 1’s imports declines by 
21.622 per cent. Despite the differences in volume movements between exports 
and imports, country 1’s trade remains balanced: country 1 suffers a decline in its 
terms of trade with the price of its imports rising by 4.958 per cent and the price 
of its exports rising by 1.324 per cent. The terms of trade decline for country 1 
explains why its consumption declines relative to GDP (-0.824 per cent relative to 
-0.006 per cent) and why its wage rate declines relative to the world-wide 
average  wage   rate  (-2.011 per cent).   The   trade  results  for  country 2  are  the   
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Table 6. MelitzGE results for the effects of tariffs imposed by country 2 
(percentage changes). 

Shocked exogenous variables,%∆ in: T12,c=10 for all c T12,c=19 for all c T12,c=50 for all c 

Endogenous variables 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
       
Armington power of tariffs, TA(s,d,c) 0.000 7.180 0.000 13.333 0.000 32.558 
Real GDP1  -0.006 -0.208 -0.011 -0.643 -0.078 -2.617 
Real consumption1  -0.824 0.593 -1.436 0.726 -2.908 -0.046 
Volume of exports1 -18.811 -21.622 -32.008 -36.364 -60.370 -66.389 
Volume of imports1 -21.622 -18.811 -36.364 -32.008 -66.389 -60.370 
Price of exports1 1.324 4.958 2.210 9.207 3.536 22.078 
Price of imports1 4.958 1.324 9.207 2.210 22.078 3.536 
Wage rate relative to average world rate1 -2.011 2.052 -3.678 3.819 -8.550 9.350 
Number of firms and quantity flows of typical firms      
N1d,c  for all c, number of c-firms on 1d link 5.471 -10.021 9.495 -18.231 18.796 -40.524 
N2d,c  for all c, number of c-firms on 2d link -19.390 6.611 -33.062 11.271 -62.477 21.300 

1d,cQ•  for all c, typical c-firm flow on 1d link -0.824 -6.672 -1.436 -11.745 -2.908 -24.767 

2d,cQ•  for all c, typical c-firm flow on 2d link 4.797 -1.382 9.118 -2.295 23.750 -4.111 
Nd,c for all c, c-firms set up in d 1.532 0.000 2.446 0.000 3.714 0.000 
Productivity of typical c-firm on sd link       

1d,c•Φ  for all c, on 1d link -0.824 2.661 -1.436 5.023 -2.908 12.849 

2d,c•Φ  for all c, on 2d link 4.797 -1.382 9.118 -2.295 23.750 -4.111 
Welfare decomposition       
Welfare(d) -0.824 0.593 -1.436 0.726 -2.908 -0.046 
made up of  contributions from changes in:       
      Employment 0.000 0.000 0.000 0.000 0.000 0.000 
      Tax-carrying flows 0.000 -0.164 0.000 -0.497 0.000 -1.994 
      Terms of trade -0.818 0.802 -1.425 1.375 -2.832 2.617 
      Production technology or productivity -3.332 -2.795 -5.890 -5.021 -12.229 -10.835 
      Conversion technology or preferences 3.327 2.750 5.879 4.869 12.152 10.165 
1. All of these variables are calculated using Armington concepts. For example, the percentage change in real 
consumption for country d, which is the same as the percentage change in d’s welfare, is calculated as an expenditure 
weighted average of percentage movements in d’s consumption of composite commodities, QCA(d,c) over all c. The 
percentage change in the volume of imports for country d is a cif value-weighted average of the percentage changes in 
QA(s,d,c) over all c and s≠d. The percentage change in the price indexes for exports and imports are calculated from 
percentage changes in values deflated by percentage changes in volumes.  

Source: Author calculations. 

complement of those for country 1. As with country 1, GDP in country 2 declines, 
but unlike country 1, country 2’s consumption rises relative to GDP (0.593 per 
cent compared with -0.208 per cent). At least at a qualitative level, none of these 
results owes anything to the Melitz aspects of MelitzGE. They will all be familiar 
to CGE modelers who work in the Armington tradition. 

By contrast, the next three blocks of results in column 1 of Table 6 deliver 
Melitz insights. With the contraction in trade caused by country 2’s imposition of 
tariffs, both countries increase production for home consumption. In count 
terms, country 1 increases its supply of commodity c to the domestic market by 
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4.6 per cent ( 11,c 11,cN *Q•  increases by 4.6 per cent) and country 2 increases 

supplies to the domestic market by 5.1 per cent ( 22,c 22,cN *Q•  increases by 5.1 per 

cent). With trade now being a less attractive means for providing variety, both 
countries increase the number of varieties of commodity c that they provide to 
the domestic market: N11,c increases by 5.471 per cent and N22,c increases by 6.611 
per cent. In both countries, shipments on the domestic market by the typical firm 
decline slightly ( 11,cQ• declines by 0.824 per cent and 22,cQ• declines by 1.382 per 

cent). The number of firms (includes non-producing start-ups as well as 
producing firms) in country 1 rises by 1.532 per cent. A rather curious result is 
that the number of c-firms in country 2 (N2,c) is unaffected by country 2’s tariffs. 
This result is derived in Appendix D using Table 2.  

In count terms, both countries experience a contraction in their exports of 
about 16 per cent ( 12,c 12,cN *Q•

 and 21,c 21,cN *Q•
 decline by about 16 per cent). The 

variety decline (number of firms) on the 2-to-1 link is particularly sharp: N21,c 
declines by 19.390 per cent whereas N12,c declines by 10.021 per cent. 
Correspondingly, the number of units of commodity c sent by the typical firm on 
the 2-to-1 link increases (4.797 per cent) whereas the number of units sent by the 
typical firm on the 1-to-2 link decreases (-6.672). With variety in both export 
bundles declining, effective export volumes decline by larger percentages than 
export counts (-18.811 and -21.622 per cent).  

What explains the reactions of trading firms on the 2-to-1 and 1-to-2 links?  
Why does country 2’s tariff raise the productivity levels of the low-productivity 
firms (and hence the typical firms) on the trade links in both direction?  Why do 
we have contrasting results on shipments by the low-productivity firms (and 
hence the typical firms) on the two links?  Finally, why does variety decline 
sharply on the 2-to-1 link relative to the 1-to-2 link?   The key equation for 
answering these questions is (T2.10) which can be written as 

 ( )min(s,d),c sd,c

min(s,d),c sd,c

Q 1 *F
s,d,c.

T
s−

= ∀
Φ

 (6.2) 

With a 10 per cent increase in 1-to-2 tariffs, there must be a 10 per cent 
reduction in Qmin(1,2),c /Φmin(1,2),c, that is the lowest productivity firm on the 1-to-2 
link will be one that has 10 per cent less production labor embodied in the 1-to-2 
flow than the low productivity firm in the initial situation. If Φ min(1,2),c does not 
change, this would mean that the low-productivity firm on the 1-to-2 link ships 
10 per cent less units of commodity c, with an approximately 10 per cent increase 
in price reflecting the 10 per cent increase in T12,c. This would be compatible with 
a demand elasticity in country 2 of about -1. However in MelitzGE, demand 
elasticities are higher (in absolute terms) than this. Thus, if Φmin(1,2),c did not 
change, Qmin(1,2),c /Φ min(1,2),c would fall by more than 10 per cent. Thus we can 
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conclude that Φmin(1,2),c increases. 32  Can the increase be as much as 10 per cent?  If 
Φmin(1,2),c increased by 10 per cent or more, then Qmin(1,2),c would be unchanged or 
would fall. But a firm with a productivity gap of least 10 per cent over the initial-
situation, low-productivity firm would be able, despite the tariff, to export more 
than the low-productivity firm in the initial situation. This is because the 
productivity gap overcomes the tariff and in addition there is a general increase 
in country 1’s competitiveness (a reduction in wage rates in country 1 relative to 
country 2). Thus, we can be certain that the tariff increase in country 2 must 
move Φmin(1,2),c by a percentage in the interval (0, 10). This explains why 
shipments for the typical firm on the 1-to-2 link must decline.  

Now consider the low productivity firm on the 2-to-1 link. With no change in 
the 2-to-1 tariffs, (6.2) implies that the lowest productivity firm on the 2-to-1 link 
in the post-tariff situation will be one that has the same amount of production 
labor embodied in the 2-to-1 flow as the low productivity firm in the initial 
situation. If Φmin(2,1),c does not change, this would mean that the low-productivity 
firm on the 2-to-1 link ships the same number of units of commodity c in the 
post-tariff situation as in the initial situation. This is incompatible with the wage 
movements in the two countries. The wage increase in country 2 relative to that 
in country 1 means that in the absence of a productivity increase the low 
productivity firm on the 2-to-1 link in the post-tariff situation would not be 
sufficiently competitive to ship the same volume as the low productivity firm in 
the initial situation. Consequently Φmin(2,1),c must be raised in the post-tariff 
situation relative to the initial situation,33 explaining why shipments of the 
typical firm on the 2-to-1 link must increase.  

The sharp decline in variety on the 2-to-1 link relative to the 1-to-2 link (the 
decline in N21,c relative to N12,c) is a reflection of the way in which tariffs are 
charged in the Melitz model. Because country 2’s tariffs are levied on production 
costs, they discriminate against large firms in country 1, or equivalently they 
favour low-productivity, low-shipment firms (firms with a high percentage of 
tariff-free fixed costs in their total costs). By contrast, the cost increases that 
country 2 generates in its own economy by imposing a tariff on imports from 
country 1 escalate both the production and fixed components of costs in its firms 
equally. With country 2’s tariffs favouring small-scale, low-shipment firms in 
country 1, but with no similar bias in country 2 arising from country 2’s loss of 
competitiveness, we have an explanation of why country 1 achieves its reduction 

                                                            
32  Φ min(1,2),c can’t be lower in the post-tariff situation than in the initial situation.  Firms 
with lower productivity levels than the initial value of Φ min(1,2),c shipped nothing in the 
pre-tariff situation and certainly won’t be able to ship anything when a tariff is imposed.   
33  A similar argument to that in the previous footnote establishes that Φmin(2,1),c can’t be 
lower in the post-tariff situation than in the initial situation.   
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in exports with a much less pronounced reduction in small-scale, low-shipment 
firms (a 10.021 per cent reduction in N12,c) than is the case for country 2 (a 19.390 
per cent reduction in N21,c).  

More analytically, if tariffs are charged on full costs, then Tsd,c appears in the 
numerator of the RHS of (6.2), cancelling out with the denominator. With Tsd,c 
eliminated from (6.2), country 2’a tariffs no longer reduce Qmin(1,2),c /Φ min(1,2),c 
relative to Qmin(2,1),c /Φ min(2.1),c. In fact country 2’s tariffs no longer affect these ratios. 
Thus, with a more conventional treatment of tariffs than that adopted by Melitz, 
there would be no tendency for country 2’s tariffs to generate a decline in the size 
(measured by embodied labor) of the shipment by the typical firm on the 1-to-2 
link relative to that by the typical firm on the 2-to-1 link. This would eliminate the 
major factor underlying the increase in N12,c/N21,c that we found in our Melitz 
simulation of an increase in country 2’s tariffs.  

6.3.1. Decomposing MelitzGE welfare results via an Armington model: theory 

In section 4 we demonstrated that Melitz results are equivalent to Armington 
results with extra shocks to productivity and preferences. Using this idea we set 
out a decomposition equation for interpreting the welfare effects of a tariff 
change in MelitzGE.  

As in the computations reported earlier in this section, we define the 
percentage change in welfare in country d in MelitzGE as a weighted average of 
the percentage changes in d’s consumption of composite commodities:  

 
d,c

c
welfare(d) Z(d,c)*q d= ∀∑  (6.3) 

where 
welfare(d) is the percentage change in d’s welfare;  
qd,c is the percentage change in d’s consumption of composite commodity c 
(that is the percentage change in Qd,c); and 
Z(d,c) is the share of d’s consumption expenditure devote to c, that is  
 

d,c d,c

d, j d, j
j

P Q
Z(d,c) c,d

P Q

 
 = ∀ 
 
 
∑

 (6.4) 

Recognizing that MelitzGE results for welfare can be generated by the 
Armington auxiliary model with movements in productivity [ A(s,c)Φ ], tariffs 
[TA(s,c)] and preferences [dA(s,d,c)] given by (4.5), (4.6) and (4.7), we can work 
with Table 3 to disaggregate the MelitzGE result for welfare(d) into five 
Armington components. These are shown for the two country case34 in Figure 2  

                                                            
34  The equation in Figure 2 is easily generalized to the r-country case. 
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as the contributions to welfare of changes in: employment; tax-carrying flows; 
the terms of trade; production technology; and conversion technology or 
preferences. The algebra underlying Figure 2 is given Appendix E. Here, we 
provide an intuitive explanation of the five components.  

To start with, we interpret the decomposition equation as referring to small 
changes in variables. In this case we don’t have to worry about movements in the 
levels variables, PA(s,d,c), QA(s,d,c) etcetera. We can imagine that these levels 
are fixed at their starting values. We will consider large changes later in this 
subsection.  

[ ]

( )

[ ]

c s

c s

PA(s,d,c)*QA(s,d,c) *welfare(d)

WA(d)*LTOTA(d)*ltota(d)

PA(s,d,c)*QA(s,d,c) * TA(s,d,c) 1 *qa(s,d,c)
TA(s,d,c)

PA(d,F,c)*QA(d,F,c) * p
TA(d,F,c)
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+ −
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( )
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c

c j
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PA(F,d,c)*QA(F,d,c) * pa(F,d,c) ta(F,d,c)
TA(F,d,c)

PA(d, j,c)*QA(d, j,c) * a(d,c)
TA(d, j,c)

 −  
 
 − −
  

+ f

∑

∑

∑∑

changes in the terms of  trade

changes in production technology or productiv[ ]

c s

ˆ* PA(s,d,c)*QA(s,d,c)* a(s,d,c)
1

s + d s − 
∑∑

ity

changes in preferences or the efficiency with which commodity c from 
different sources can be converted into composite units of  c for 
consumption in d 

 
 
 
    

 

Notation:  The decomposition refers to welfare for country d. Country F (foreign) is the other 
country. Uppercase symbols are defined in Table 3. Lowercase symbols are percentage changes in 
the variables denoted by the corresponding uppercase symbols, for example, pa(F,d,c) is the 
percentage change in PA(F,d,c). An exception is ˆa(s,d,c)d . This is the percentage change in 

a(s,d,c).d  

Figure 2. Armington decomposition of Melitz welfare. 
Source: Author calculations. 
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The LHS of the decomposition equation is 100 times the change in welfare. 
The first term on the RHS is 100 times the contribution to the change in welfare 
of the change in employment. With labor in the Armington model being paid 
according to the value of its marginal product, an x per cent increase in 
employment in country d [ltota(d) = x] generates an expansion in the quantity of 
GDP (holding prices at their initial levels) of the wage rate [W(d)] times the 
increase in employment [0.01*LTOTA(d)*ltota(d)]. With prices held constant, this 
is also the contribution of the expansion in employment to welfare because, in 
our simplified model, the percentage change in the quantity of GDP is the same 
as that in the quantity of consumption which by definition is the same as the 
percentage change in welfare.  

The second term on the RHS of the decomposition equation is the 
contribution to welfare in country d of changes in tax-carrying flows. This is the 
general equilibrium version of the consumer and producer surplus rectangles 
and triangles in familiar partial equilibrium demand and supply diagrams (e.g. 
Figure 3 below). Country d gains welfare if there is an expansion in its 
absorption of commodity c from source s [that is qa(s,d,c) > 0] and this flow is 
taxed by country d. The gain in welfare arises because d’s users of c from s 
(commodity s,c) value an extra unit at the tax-inclusive price [PA(s,d,c)] but it 
costs country d only the tax-exclusive price to provide an extra unit of s,c. The 
welfare gain per unit of extra s,c is the gap between the tax-inclusive and tax-
exclusive prices which, as reflected in the second term of the decomposition 
formula, is PA(s,d,c)*(TA(s,d,c)-1)/TA(s,d,c).  

The third term is the terms-of-trade effect. A terms-of-trade improvement, 
that is an increase in fob export prices relative to cif import prices, enables 
country d to convert any given volume of exports into an increased volume of 
welfare-enhancing imports. The percentage movement in d’s fob export price for 
commodity c is given by pa(d,F,c)-ta(d,F,c). In measuring d’s welfare this 
percentage movement is weighted by the ratio of the fob value of the d,F,c flow 
to the value of d’s total consumption. Similarly, the percentage movement in d’s 
cif import price for commodity c is given by pa(F,d,c)-ta(F,d,c). In measuring d’s 
welfare this is weighted by the ratio of the cif value of the F,d,c flow to the value 
of d’s total consumption.  

The fourth term is the contribution to d’s welfare of changes in production 
technology. Country d’s welfare is improved if it can produce more output per 
unit of labor input. If d’s productivity in the production of commodity c 
improves by x per cent [fa(d,c) = x], then x per cent of the labor devoted to 
commodity c can be released to other productive uses without affecting d’s 
production of c. From a welfare point of view, this is equivalent to an increase in 
employment. Quantitatively, the welfare effect is the value of x per cent of the 
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labor devoted to c. With labor being the only input, this is x per cent of the tax-
exclusive value of the output of c in country d.  

The fifth term in the decomposition equation is the contribution to d’s welfare 
of changes in conversion technology or preferences [changes in the dA(s,d,c)s]. 
This term is less familiar to CGE modellers than the previous terms. It appears in 
the welfare decomposition equation because increases in the dA(s,d,c)s improve 
the ability of country d to convert units of commodity c from different sources 
into welfare-carrying units of composite-commodity c. This can be understood 
by recalling that (T3.2) and (T3.3) in Table 3 imply that composite units of 
commodity c are “produced” for households in country d by the CES technology: 

 

( ) ( )
( 1)

( 1)

s
QCA d,c A s,d,c QA(s,d,c)

s s−
s− s = d  

∑  (6.5) 

This means that increases in ( )A s,d,cd  allow more composite commodity, 

( )QCA d,c , to be generated for any given levels of underlying Armington 

commodities, ( )QA s,d,c , or equivalently, that less units of the underlying 

commodities are required to generate any given level of the composite 
commodity. Via the dA’s, the Armington auxiliary model captures love-of-
variety effects generated in the Melitz model, effects which change the ability of 
any given volume of Armington commodities to satisfy consumer requirements.  

To derive the fifth term, a good starting point is (T3.2). In percentage-change 
form (T3.2) can be written as 

Thus, a 1 per cent increase in ( )A s,d,cd  has an impact percentage effect on the 

cost of creating a unit of composite c in country d given by 
 

( ) ( )
( ) 1

1ˆa s,d,c 1
A s,d,c *PA(s,d,c)

pca d,c *
1 PCA(d,c)

s −s

−sd =

 ds = −     s −   
 (6.7) 

Via (T3.3) this can be written as 
 

( ) ( )
( )

ˆa s,d,c 1
PA(s,d,c)*QA s,d,c

pca d,c *
1 PCA(d,c)*QCA(d,c)d =

 s = −   s −   
 (6.8) 

which is negative (recall that s > 1). The significance of a reduction in the cost of 
creating units of composite c for country d’s welfare depends on the share of c in 
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d’s total consumption. Combining this idea with (6.8) leads to the fifth term in 
the decomposition equation. 

As mentioned earlier, with the levels variables fixed at their initial values, our 
decomposition equation accurately produces the change in welfare caused by 
small shocks to the exogenous variables in MelitzGE. With large shocks, we need 
to allow for changes in the levels variables. In GEMPACK computations this is 
done by applying the shocks to the exogenous variables in n steps. In the first 
step we apply 1/n-th of the required changes in the exogenous variables. If n is 
large we can work out accurately the change in welfare in the first step and the 
five contributions identified on the RHS of the decomposition equation. Then we 
update the levels variables according to the changes from the first step. In the 
second step we again apply 1/n-th of the required changes in the exogenous 
variables. We work out the welfare effects in this second step and the five 
contributions using the decomposition equation with updated levels variables. 
Proceeding in this way, we can use the decomposition equation to calculate 
accurately the welfare effect of the total shocks to the exogenous variables. The 
contribution of each of the five components is the sum of its contribution across 
the n steps.35 

6.3.2. Decomposing MelitzGE welfare results via an Armington model: results 

In the bottom blocks in Table 6 we use the equation from Figure 2 to 
decompose the welfare effects of the increases in country 2’s tariffs.  

The most striking aspect of the welfare decomposition results is the offsetting 
nature of the production technology and conversion technology contributions 
(components 4 and 5). For both countries in the three tariff experiments, the 
production-technology contribution is negative, and is closely offset by a positive 
conversion-technology contribution. The production- and conversion-technology 
contributions are what Melitz adds to an Armington welfare calculation. Because 
these contributions offset, it appears that the Armington calculation of the 
welfare effects of a tariff change is not misleading, even in a world in which 
Melitz specifications are valid.  

We suspect that this striking result is another implication of the envelope 
theorem. As demonstrated in section 3, with tariffs at zero, a Melitz model 
generates an optimal trade-off in the widgets market between keeping costs 
down through long-production runs and meeting consumer demand for variety. 
The envelope theorem suggests that marginal shifts in this trade-off (e.g. shorter 
production runs but more varieties) away from the optimum will have little 
effect on welfare. Thus, although the imposition of tariffs causes the cost/variety 

                                                            
35  Adding up contributions from successive steps is the idea underlying GEMPACK 
decomposition calculations, see Harrison et al. (2000). 
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trade-off in each country to change, this change does not have a significant effect 
on welfare. In both countries, restriction of trade through the imposition of a 
tariff by country 2 causes reduced productivity (higher costs) offset by increased 
varieties. In both countries, a relatively large number of small, domestic-market-
only, low-productivity firms replace imports from a relatively small number of 
high-productivity foreign firms. Notice, for example, that by combining data in 
Table 5 with results for country 1 in the 10 per cent experiment, we can see that 
the changes in N11c and N21c are 0.03539 (= 0.64505*0.05471) and -0.00799 
(=0.04123*-0.19390), implying an increase of 0.02730 or 3.9 per cent 
[=100*0.02730/(0.64505+0.04123)] in the number of varieties available to 
households in country 1. At the same time, the emergence of low-productivity 
firms lowers average productivity in country 1.  

The cancelling out of the two technology effects leaves welfare in our 
MelitzGE tariff simulations determined by factors that have been familiar to 
trade economists since the 1950s or earlier36: the terms-of-trade effect and the 
efficiency or tax-carrying-flows effect.  

For country 2, the welfare outcome of an increase in tariffs from zero to 7.180 
per cent is dominated by the terms-of-trade effect: a 0.802 contribution to a total 
welfare effect of 0.593 per cent. By imposing a 7.180 per cent tariff, country 2 
improves its terms of trade by 3.6 per cent (4.958 per cent increase in the price of 
its exports compared with 1.324 per cent increase in the price of its imports). 
With exports (and imports) being about 23 per cent of GDP37, a 3.6 per cent 
improvement in the terms of trade is equivalent to a GDP gain of 0.83 per cent, 
close to the terms-of-trade welfare contribution shown for country 2 in the first 
tariff simulation. The tax-carrying-flow effect or the familiar welfare triangle 
from textbook partial equilibrium diagrams provides a small offset, -0.164 per 
cent, to country 2’s terms-of-trade gain. Again, the magnitude of this effect is 
easily understood via a simple calculation, see Figure 3 and the data in Table 5.  

Consistent with the theory of the optimal tariff38, as country 2 increases its 
tariffs, the negative welfare contribution from tax-carrying flows increases much 
more rapidly than the positive welfare contribution from the terms of trade. By 
the time country 2’s tariffs in Armington terms have reached 32.558 per cent 
(third simulation in Table 6), the tax-carrying-flow effect has almost cancelled 
out the terms-of-trade effect. This, together with a small negative contribution  

                                                            
36  See for example Corden (1957) and Johnson (1960).  
37  With the tariffs at zero, exports are 25.42 per cent of country 2’s GDP.  With the 
imposition by country 2 of 10 per cent tariffs (Melitz basis), the export share for country 2 
falls to 20.91 per cent.  The average share as tariff rates move from zero to 10 is 23 per 
cent.   
38  See for example, Dixon and Rimmer (2010).  
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Figure 3. Country 2’s demand for imports: back-of-the-envelope calculation of the 
welfare contribution of changes in tax-carrying flows in the first tariff simulation in 
Table 6. 

Source: Author calculations. 

from the combined technology components leaves the net welfare effect for 
country 2 slightly negative (-0.046 per cent). By conducting a series of 
simulations in which we varied the tariff imposed by country 2 we found that the 
optimal tariff for country 2 in the absence of retaliation by country 1 is 13.333 per 
cent in Armington terms (19 per cent in Melitz terms, second simulation in Table 
6). 

For country 1, the terms-of-trade movement accounts for almost the entire 
welfare effect in all three simulations: there are no employment effects because 
employment is held constant and there are no tax-carrying-flow effects because 
country 1 has no taxes. The terms-of-trade effects for country 1 are the opposite 
of those for country 2.  

6.4. Is a Melitz model equivalent to an Armington model with a higher substitution 
elasticity? 

That the welfare results computed in the previous subsection depend almost 
entirely on Armington mechanisms (terms-of-trade and efficiency effects) 
suggested to us that results from a Melitz model might be more generally 
equivalent to those from an Armington model.  

Initially we tested this idea by comparing tariff results from Melitz and 
Armington models built with identical databases and with identical values for 
the substitution parameter s, s = 3.8. Table 7 gives the results for this exercise. 

1.0718
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0.38369 0.47259 Quantity of imports

Tariff-inclusive price

a

bc

Loss area(abc)  = - 0.003192
GDP   = 1.85880 (see Table 5)
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to the tax-carrying-flow contribution in
the first tariff simulation
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The Melitz results in Table 7 are the same as those in Table 6: they refer to the 
effects of unilateral tariff increases by country 2 computed with the 2-country, 2-
commodity version of MelitzGE. The Armington results were computed by the 
model set out in Table 3 with the shocks to TA(1,2,c) being the Armington 
equivalents [calculated in (4.6)] of the Melitz tariff shocks.  

The results in Table 7 show much more restrictive effects on trade flows from 
tariff increases in the Melitz model than in the Armington model. For example, 
whereas the Melitz computation for t12,c=10 [or ta(1,2,c)=7.18] gives reductions in 
country 2’s exports and imports of 21.622 and 18.811 per cent, the Armington 
computation gives reductions of only 11.220 and 7.763 per cent. With less trade 
response (steeper implied export demand curves), the Armington model 
generates larger terms-of-trade gains for the country imposing the tariff and 
correspondingly larger terms-of-trade losses for the other country. At the same 
time, the Armington model generates smaller efficiency losses than the Melitz 
model for the country imposing the tariff (a smaller triangle in Figure 3). Larger 
terms-of-trade gains and smaller efficiency losses for the country imposing the 
tariff mean that the optimal tariff is much larger in the Armington model than 
the Melitz model. In computations not reported here we found that the optimal 
tariff rate for country 2 in the absence of retaliation by country 1 is about 42 per 
cent [TA(1,2,c) = 1.42]. As mentioned earlier, the optimal tariff for country 2 in 
the Melitz model is about 13 per cent [TA(1,2,c) = 1.13].  

It is tempting to interpret the results in Table 7 as meaning that the Armington 
specification leads to under estimates of the restrictiveness of tariffs. However, 
we don’t think that such an interpretation is legitimate. To us, Table 7 
demonstrates that s = 3.8 in a Melitz model doesn’t mean the same thing as s = 
3.8 in an Armington model.  

In comparing unobservable implications (e.g. welfare effects) from competing 
models we should parameterize the models so that they give the same results for 
observable outcomes. Potentially, it is possible to observe the response of trade 
flows to tariff changes. Let’s assume for the sake of argument that MelitzGE with 
s = 3.8 correctly produces these responses. Can we build an Armington model on 
the same database39 as that of the Melitz model which also correctly produces the 
trade flow responses?  And if we can do this, what do the resulting models say 
about welfare? 

Table 8 repeats the Melitz results from Tables 6 and 7 with s = 3.8 and 
compares them with Armington results computed with the same database but 
with s = 8.45. The value 8.45 was chosen for the Armington model by trial and 
error with the objective of bringing the Armington trade responses into line with 
the Melitz responses. As can be seen from Table 8, this objective was achieved to 

                                                            
39  By database we mean values of trade flows, outputs, wage rates and employment. 
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Table 7. Percentage effects of tariffs imposed by country 2: Melitz and Armington results with s=3.8 in both models. 

 
Melitz with 
s=3.8 

Armington with 
s = 3.8 

Melitz with 
s=3.8 

Armington with 
s = 3.8 

Melitz with 
s=3.8 

Armington with 
s = 3.8 

     
Shocked exogenous variables t12,c=10, all c ta(1,2,c)=7.18, all c t12,c =19, all c ta(1,2,c)=13.33, all c t12,c =50 for all c ta(1,2,c)=32.56, all c 

Endogenous variables 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
             
Armington power of tariffs, 
TA(s,d,c) 0.000 7.180 0.000 7.180 0.000 13.333 0.000 13.333 0.000 32.558 0.000 32.558 
Real consumption  -0.824 0.593 -0.929 0.845 -1.436 0.726 -1.624 1.360 -2.908 -0.046 -3.338 2.130 
Volume of exports -18.811 -21.622 -7.763 

  

-11.220 -32.008 -36.364 -13.760 -19.530 -60.370 -66.389 -29.247 -39.558 

Volume of imports -21.622 -18.811 -11.220 
 

-7.763 
 

-36.364 -32.008 -19.530 -13.760 -66.389 -60.370 -39.558 -29.247 
Welfare decomposition             
Welfare(d) -0.824 0.593 -0.929 0.845 -1.436 0.726 -1.624 1.360 -2.908 -0.046 -3.338 2.130 
made up of  contributions from changes in:            
  Employment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  Tax-carrying flows 0.000 -0.164 0.000 -0.067 0.000 -0.497 0.000 -0.213 0.000 -1.994 0.000 -0.983 
  Terms of trade -0.818 0.802 -0.929 0.912 -1.425 1.375 -1.624 1.573 -2.832 2.617 -3.338 3.113 
  Production technology, 
productivity -3.332 -2.795 0.0 0.0 -5.890 -5.021 0.0 0.0 -12.229 -10.835 0.0 0.0 
  Conversion technology, 
preferences 3.327 2.750 0.0 0.0 5.879 4.869 0.0 0.0 12.152 10.165 0.0 0.0 

Source: Author calculations.
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Table 8. Percentage effects of tariffs imposed by country 2: Melitz results with s=3.8 compared with Armington results with s=8.45. 

 
Melitz with 
s=3.8 

Armington with 
s = 8.45 

Melitz with 
s=3.8 

Armington with 
s = 8.45 

Melitz with 
s=3.8 

Armington with 
s = 8.45 

     
Shocked exogenous variables t12,c=10, all c ta(1,2,c)=7.18, all c t12,c =19, all c ta(1,2,c)=13.33, all c t12,c =50 for all c ta(1,2,c)=32.56, all c 

Endogenous variables 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
             
Armington power of tariffs, 
TA(s,d,c) 0.000 7.180 0.000 7.180 0.000 13.333 0.000 13.333 0.000 32.558 0.000 32.558 
Real consumption  -0.824 0.593 -0.830 0.655 -1.436 0.726 -1.381 0.858 -2.908 -0.046 -2.476 0.460 
Volume of exports -18.811 -21.622 -18.789 -21.682 -32.008 -36.364 -32.009 -36.331 -60.370 -66.389 -60.226 -65.725 
Volume of imports -21.622 -18.811 -21.682 -18.789 -36.364 -32.008 -36.331 -32.009 -66.389 -60.370 -65.725 -60.226 
Welfare decomposition             
Welfare(d) -0.824 0.593 -0.830 0.655 -1.436 0.726 -1.381 0.858 -2.908 -0.046 -2.476 0.460 
made up of  contributions from changes in:            
  Employment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  Tax-carrying flows 0.000 -0.164 0.000 -0.161 0.000 -0.497 0.000 -0.482 0.000 -1.994 0.000 -1.868 
  Terms of trade -0.818 0.802 -0.830 0.816 -1.425 1.375 -1.381 1.340 -2.832 2.617 -2.476 2.329 
  Production technology, 
productivity -3.332 -2.795 0.0 0.0 -5.890 -5.021 0.0 0.0 -12.229 -10.835 0.0 0.0 
  Conversion technology, 
preferences 3.327 2.750 0.0 0.0 5.879 4.869 0.0 0.0 12.152 10.165 0.0 0.0 

Source: Author calculations. 



Journal of Global Economic Analysis, Volume 1 (2016), No. 1, pp.  1-110. 
 
 

51 
 

a high level. The Melitz and Armington results for trade flows in Table 8 are 
close to identical. But what about the welfare results?   

These are also close. Why?  With the trade responses in line, we would expect 
the efficiency and terms-of-trade effects in the two models to be similar. This is 
confirmed by the results for the welfare contributions in the tax-carrying-flows 
and terms-of-trade rows in Table 8. With the Melitz production-technology and 
conversion-technology effects largely cancelling out, the two model must 
produce similar welfare results.Thus it appears in our computations that s = 3.8 
in MelitzGE means approximately the same thing as s = 8.45 in the 
corresponding Armington model. While it is possible to adjust one instrument, 
the inter-country substitution elasticity, in a two-country, one-sector Armington 
model to reconcile the model’s results with those from a Melitz model, Balistreri 
et al. (2010, p. 87) doubt that this can be generalized. They say  

 “One might think that the Armington elasticity of substitution, sA, can be set to 
match the trade reactions in the Melitz model … but this is not the case. If we adjust 
sA to match some of the Melitz model trade flows the errors on the other flows in the 
bilateral matrix become larger.”  

The quantitative and policy significance of Balistreri et al.’s objection should be 
treated as open issues. But our view is that if sA for commodity c is set so that the 
commodity-c import response for a country to movements in its own 
commodity-c tariff approximate those in the Melitz model implemented with 
similar data, then there is an expectation that the two models will imply similar 
welfare effects (see Figure 3).  

In Table 9 we try to discover a more general relationship between s in 
MelitzGE and s in the corresponding Armington model. We look for the 
Armington s’s that lead to similar results to those in MelitzGE for the effects of a 
10 per cent tariff imposed by country 2 [t12,c = 10 for all c] as we vary the Melitz 
s’s between 3 and 4.6. As can be seen from the table, the Melitz results for s = 3 
can be closely reproduced by Armington with s = 7.90, the Melitz results for s = 
4.6 can be closely reproduced by Armington with s = 9.15, and as we saw earlier 
in Table 8, the Melitz results for s = 3.8 can be closely reproduced by Armington 
with s = 8.45. The implied relationship between the Melitz and Armington s’s is 
illustrated in Figure 4.  

In creating Table 9 we had to consider several technical issues. The first 
concerns the construction of the Melitz database, which is also the Armington 
database. We wanted to maintain the same initial data (e.g. export shares of 25.4 
per cent of GDP) as we varied the Melitz s. As will be recalled from subsection 
6.1, we set up the initial database for MelitzGE by a recursive sequence of 
calculations starting from assumed values for s and other parameters. The 
database emerging from these calculations depends on s: a higher Melitz s  
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Figure 4. Melitz substitution elasticities and equivalent Armington elasticities in the 
siumulation of a 10 per cent tariff imposed by country 2. 

Source: Author calculations. 

implies more trade. To counteract this effect and produce databases with 
identical initial trade shares, we varied not only s across the three Melitz 
experiments in Table 9, but also α, the parameter in the Pareto distribution of 
productivities across firms (see Appendix A). Increases in α reduce the 
proportion of firms that have productivity above 2, the minimum productivity 
for participation in international trade in the two-country version of MelitzGE 
[see (6.1)]. In this way, higher assumed values for α lead to lower export shares 
in GDP for each country in the initial database. Table 9 shows the α values we 
adopted.  

The second technical issue concerns the appropriate Armington tariff shock. 
While the Melitz tariff shock is the same across the three Melitz simulations in 
Table 9, the equivalent Armington tariff shock varies from 6.45 to 7.18 to 7.66. 
The reason can be traced back to the Melitz version of equation (T2.1) in Table 2. 
There we see that the markup factor on the variable costs of the sales of the 
typical firm on any link is s/(s-1). As s is moved from 3 to 4.6, this markup factor 
falls from 1.50 to 1.28 and the share of variable costs in total sales revenue 
increases from 67 per cent to 78 per cent. Thus, as s is moved from 3 to 4.6, the 
Melitz tariff of 10 per cent is charged on a larger fraction of the value of country 
2’s imports. Consequently, the equivalent Armington tariff rate, which is charged 
on the entire cif value, rises.  
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The final technical issue concerns the range of values used for the Melitz s, 3.0 
to 4.6. Why did we restrict s for the Melitz model to this range?  With the Melitz 
s less than 3.0, the implied mark-ups on variable costs are unrealistically large, 
greater than 50 per cent. With the Melitz s greater than 4.6, we judged that the 
trade responses to tariff changes were unrealistically large: more than 24 per cent 
reductions in country 2’s exports in response to its imposition of a 10 per cent 
Melitz tariff (a 7.66 per cent Armington tariff). In fact, a difficulty with the Melitz 
model is that the trade responses are large even when the Melitz s is relatively 
low, 3.0. It appears that to generate trade responses consistent with 
econometrically observed Armington elasticities (values normally in the range 2 
to 6) we would need Melitz s of less than 3 with correspondingly enormous 
mark-ups.  

6.4.1. Melitz/Armington welfare equivalence: some earlier literature 

Consideration in earlier literature of the relationship between Melitz and 
Armington models has produced mixed results. Arkolakis et al. (2012, p.118) 
reached conclusions broadly compatible with the calculations in Table 9. They 
state that  

“Within the class of trade models considered in this paper [which included Armington 
and Melitz], the number of sources of gains from trade varies, but conditional on 
observed trade data, the total size of the gains from trade does not.”  

In other words, Arkolakis et al. are saying that over a fairly broad class of models 
if a shock gives the same trade response then it also gives the same welfare 
outcomes. This conclusion is disputed by Balistreri and Rutherford (2013, p. 
1542): 

“The strong equivalence results suggested by Arkolakis et al. (2008, 2012) are not 
supported in our empirical model. For us, this indicates that the real world 
complexities accommodated in CGE models are, indeed, important.”  

However, it appears that Balistreri and Rutherford did not compare Armington 
and Melitz results across comparable experiments, that is experiments in which 
the Armington elasticities are adjusted so that the trade responses across models 
are the same. Put another way, we suspect that the Balistreri and Rutherford 
comparison is more like that in Table 7 than those in Tables 8 and 9. Zhai (2008,  
p. 593) reports an Armington/Melitz comparison in which he explicitly 
recognizes the need to equalize trade responses but finds significantly different 
welfare responses: 

“To ensure the new model [a Melitz model] generates additional gains from trade 
expansion in comparison with the conventional model [an Armington model], I raise 
the Armington elasticies in the standard Armington CGE model by 33 per cent and 
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Table 9. Percentage effects of tariffs imposed by country 2: Discovering the relationship between s for Melitz and s for Armington. 

 Melitz with 
s=3 
α=3.8 

Armington with 
s = 7.90 

 

Melitz with 
s=3.8 

Armington with 
s = 8.45 

Melitz with 
s=4.6 

Armington with 
s = 9.15 

 α=4.6  α=5.4  

Shocked exogenous variables t12,c=10, all c ta(1,2,c)= 6.45, all c t12,c=10, all c ta(1,2,c)= 7.18, all c t12,c=10, all c ta(1,2,c)= 7.66, all c 

Endogenous variables 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
Country 

d=1 
Country 

d=2 
             
Armington power of tariffs, 
TA(s,d,c) 0.000 6.452 0.000 6.452 0.000 7.180 0.000 7.180 0.000 7.659 0.000 7.659 
Real consumption  -0.801 0.594 -0.763 0.628 -0.824 0.593 -0.830 0.655 -0.845 0.588 -0.866 0.655 
Volume of exports -16.074 -18.426 -15.916 -18.628 -18.811 -21.622 -18.789 -21.682 -21.524 -24.562 -21.557 -24.519 
Volume of imports -18.426 -16.074 -18.628 -15.916 -21.622 -18.811 -21.682 -18.789 -24.562 -21.524 -24.519 -21.557 
Welfare decomposition             
Welfare(d) -0.802 0.595 -0.763 0.628 -0.824 0.593 -0.830 0.655 -0.845 0.588 -0.866 0.655 
made up of  contributions from changes in:            
  Employment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  Tax-carrying flows 0.000 -0.127 0.000 -0.123 0.000 -0.164 0.000 -0.161 0.000 -0.197 0.000 -0.196 
  Terms of trade -0.670 0.658 -0.763 0.751 -0.818 0.802 -0.830 0.816 -0.903 0.885 -0.866 0.851 
  Production technology, 
productivity -3.115 -2.247 0.0 0.0 -3.332 -2.795 0.0 0.0 -3.626 -3.307 0.0 0.0 
  Conversion technology, 
preferences 2.983 2.311 0.0 0.0 3.327 2.750 0.0 0.0 3.685 3.207 0.0 0.0 

Source: Author calculations.
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run the tariff reduction simulation. Compared to the Melitz CGE model, the 
Armington CGE model with high elasticities predicts similar expansion in global real 
exports, but 23 per cent lower global welfare gains.”  

Zhai does not explain why his Melitz calculations give larger welfare effects than 
the comparable Armington calculations, but we note that he does not fully 
implement the Melitz model:  

“I abstract from the dynamic parts of the Melitz model by assuming no entry and exit 
of firms …”         Zhai (2008, p. 585). 

This introduces pure profits in Zhai’s version of the Melitz model that are not 
present in either the original Melitz model or Zhai’s version of the Armington 
model. An extra distortion, in the form of pure profits, in Zhai’s Melitz model 
but not in his Armington model would cast doubt on the legitimacy of the 
welfare comparison across the two models.  

The Melitz/Armington comparisons by Arkolakis et al. (2012) and us are 
based on special assumptions. The formal analysis in Arkolakis et al. is confined 
to the effects on country j’s welfare of shocks to the price of imports from country 
i in 1-sector, 1-factor-of-production, n-country models with iceberg trade costs. 
We also assume that there is only one factor of production in each of n countries 
although we do allow for revenue-generating tariffs and focus on the effects on 
country j’s welfare not only of shocks emanating from other countries but also 
from j’s own trade policy. Nevertheless, strong statements are not warranted 
concerning the empirical relevance of welfare equivalence between Armington 
and Melitz models. On the other hand, strong non-equivalence statements are 
equally unwarranted. For example it is premature to accept uncritically that:     

“… Balistreri, Hillberry and Rutherford (2011) show that adding firm heterogeneity 
to standard computable general equilibrium models of trade raises the gains from 
trade liberalization by a factor of four. Empirical confirmation of the gains from trade 
predicted by models with heterogeneous firms represents one of the truly significant 
advances in the field of international economics.”               Melitz and Trefler (2013, 
p. 114) 

Our own view is that the introduction to CGE modelling of the phenomena 
emphasized by Melitz will not lead to a sustained and substantial revision of 
earlier welfare estimates derived from models based on pure competition and 
Armington.40  However, we have qualifications centred on: 

• the initial situation assumed in our computations; and 
• the absence in our computations of inter-sectoral resource movements.  

                                                            
40  Melitz additions to CGE models may help us to understand other aspects of 
international trade, e.g. the dominance of large firms.  
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6.4.2. Distortions in the initial situation  

On our interpretation, the cancelling out of the productivity (production 
technology) and variety (conversion technology) effects in the calculation of the 
welfare implications of tariff changes is a reflection of the envelope theorem. 
Taken literally, the envelope theorem explains the cancelling out of these Melitz 
effects only if the initial situation is optimal. This was the case in the 
computations in subsections 6.2 and 6.3. In those computations, there were zero 
tariffs in the initial situation and as shown in section 3, the Melitz model with 
zero tariffs implies an optimal (cost-minimizing) market equilibrium. But would 
the Melitz effects continue to cancel out if the initial situation were distorted by 
non-zero tariffs or other taxes?   

The envelope theorem has proved a valuable guide in many CGE calculations, 
the bulk of which start from a distorted equilibrium. We don’t see a reason to 
suppose that the introduction of Melitz features changes anything in this regard 
and we suspect that the envelope theorem will go on being a useful guide. 
Evidence of this can be seen in Table 6. Compare vertical panels 2 and 3 which 
show the effects of moving from one distorted position to another: from a 
position with a 19% tariff to a position with a 50% tariff. The comparison reveals 
that despite starting from a distorted position (19% tariff) the insight from the 
envelope theorem continues to apply: the movements in the productivity and 
preference terms continue to approximately offset. Nevertheless, we need to 
keep an open mind on this issue. If a model embraces distortions that impinge 
directly on the productivity/variety trade off, then it is possible that Melitz might 
capture legitimate welfare changes from a tariff reform that are missed by 
Armington. This could happen for example for tariff cuts in an industry in which 
small-scale domestic production is subsidized.  

6.4.3. Inter-sectoral resource movements: the Dixit-Stiglitz model 

The optimality propositions in section 3 were derived in a one-sector (widget) 
model. Their validity does not extend in any general way to a model in which 
there are widgets, produced in a monopolistically competitive industry with 
economies of scale at the firm level, and thingamajigs, produced in purely 
competitive industry with constant returns to scale. We can explore this point in 
the context of the two-sector model by Dixit and Stiglitz (1977). Another benefit 
of spending time on the Dixit-Stiglitz model is that we can obtain a relatively 
easy version of the optimality propositions by considering a special case in which 
the purely competitive, constant-returns-to-scale sector is small. As mentioned in 
section 3 (footnote 9), this might be helpful for readers who would like to be 
convinced that the propositions are correct but want to avoid the lengthy proofs 
in Appendix B that are necessary for the Melitz model.  
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In the Dixit-Stiglitz model there is no trade and no productivity variation 
across firms in the same industry. As in the Krugman model, all firms in the 
monopolistically competitive widget industry price their product at P• , given by  

 WP *
1•

s
=
s− Φ

    (profit maximizing price) (6.9) 

where 
s is the inter-variety substitution elasticity; 
W is the wage rate; and 
Φ is marginal productivity (extra output per unit of extra labor) which is 
assumed fixed. 

Free entry and exit lead to  
 

WP *Q W *H• •
 − = Φ 

    (zero pure profits) (6.10) 

where 
Q•  is the output of each widget firm; and 
H is the number of units of labor required to set up a firm. 
In the spirit of Dixit-Stiglitz, we specify the demands for widgets and 
thingamajigs by assuming that households  
 choose Q•  and R to maximize a Cobb-Douglas utility function  
 

11N *Q *R
a

a
s

−s−
•

 
  
 

 (6.11) 

subject to a budget constraint of the form  
 W *L W *R P * N*Q• •= +  (6.12) 

where 
a is a parameter satisfying 0 < a <1;  
R is consumption of thingamajigs;  
N is the number of widget firms and varieties; and 
L is the household’s endowment of labor (assumed fixed).  

In (6.11), love-of-variety is given the same treatment as in the Krugman and 
Melitz models [see (T2.4) in Table 2]. In (6.12), it is assumed that: labor is the only 
endowment; production of a unit of thingamajigs takes one unit of labor41; and 
consistent with zero pure profits, the price of thingamajigs is W. Without loss of 
                                                            
41  For Dixit-Stiglitz, R is leisure or rest.  It can be thought of as being created under 
constant returns to scale by using one unit of the labor endowment per unit of its 
production. 
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generality, we can assume that W = 1. Then from (6.11) and (6.12) we can derive 
the household demand equations: 

 ( )R 1 *La= −  (6.13) 

and 
 *LQ

P * N
a

•
•

=     . (6.14) 

It is convenient to choose units so that Φ =1. Then we complete our Dixit-
Stiglitz model by adding the market-clearing equation for labor as:  

 N*Q R N*H L• + + = . (6.15) 

After a little algebra we find that the market solution (endogenous variables 
as functions of exogenous variables) for our Dixit-Stiglitz model is: 

 
P

1•
s

=
s−

m   , (widget price in market economy) (6.16) 

 
( )R 1 *L= −m a   , (consumption of pure competition 

good in market economy) 
(6.17) 

 LN *
H

=
s

m a   ,  (number of firms in widget 
industry in market economy) 

(6.18) 

 
( )Q 1 *H• = s −m   ,  (output of each widget firm in 

market economy) 
(6.19) 

where the superscript m denotes market. 
Is this market solution optimal?  As in section 3, we can answer this question 

by solving a planner’s problem. For the Dixit-Stiglitz model we consider the 
problem: 

choose N, Q•  and R to maximize (6.11) subject to (6.15),which gives the 
solution42 

                                                            
42  In deriving the planner’s solution, we set up the Lagrangian and derived three first 
order conditions by differentiating with respect to Q• , N and R.  Then we divided the 
first of these conditions by the second, which gave us (6.22).  Next we divided the second 
condition by the third, which gave us an expression for N* Q• +N*H in terms of R.  By 
using this in (6.15) we obtained (6.20), and eventually (6.21).     
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 ( ) ( )1 * 1
R *L

1
− s−

=
s− +

p a
a

  ,  
(optimal consumption of pure 
competition good) 

(6.20) 

 

( )
LN *

1 H
=
s− −

p a
a

  , (optimal number of firms in 
widget industry) 

(6.21) 

 
( )Q 1 *H• = s −p   , (optimal output of each widget 

firm) 
(6.22) 

where the superscript p denotes planner. 
Comparing the market solution with the planners solution, we find that  
 

R 1 1
1R

m

p
as− +

= >
s−

 (6.23) 

 
N (1 ) 1
N

m

p
as− −

= <
s

 (6.24) 

 
Q 1
Q

m

p
•

•

=  (6.25) 

Thus, the market solution is not optimal: consumption of thingamajigs is too 
high; and the number of widget firms and varieties, and the consumption of 
widgets measured by N*Q•  are too low. Put another way, the market devotes 
too much labor to thingamajigs and too little to widgets. Only for widget output 
per firm is the market solution optimal.  

The market misallocation of labor arises from the different market structures 
in the two industries. Firms in both industries hire labor up to the point where 
the wage rate (W) equals the value of the marginal revenue product of labor 
(marginal product of labor times marginal revenue). For firms in the purely 
competitive thingamajig industry, marginal revenue product is the same as the 
value of the marginal product (marginal product of labor times product price), 
but for firms in the monopolistically competitive widget industry, marginal 
revenue product of labor is less than the value of the marginal product of labor. 
With the wage rate being the same in both industries, the market gives an 
allocation of labor in which the value of the marginal product in thingamajigs is 
less than that in widgets. 43  A planner does better than the market [generates a 
higher value for the utility function (6.11)] by ensuring equality in the values of 
                                                            
43  In the Dixit-Stiglitz model, the value of the marginal product of labor in thingamajigs 
is (s-1)/s times that in widgets.   
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the marginal product of labor across industries. Relative to the market outcome, 
the planner allocates more labor to widgets and less to thingamajigs, thereby 
lowering the value of the marginal product of labor in widgets and raising it in 
thingamajigs. 

If a approaches one, effectively reducing the Dixit-Stiglitz model to one sector, 
then (6.23) to (6.25) imply that the market produces an optimal number of 
varieties, establishing as promised earlier a simplified version of the optimality 
propositions derived in section 3 for the Melitz one-sector widget model.  

It is also worth noting that even in the two-sector case, the market generates 
on optimal productivity/variety trade-off within the widget industry. This can be 
proved by showing that Nm and Q•

m  are the solution to the problem of  

choosing N and Q•  to maximize 1N *Q
s
s−

•  

subject to  
 

widgetsN*H N*Q L• =+ m   (6.26) 44  

where  

widgetsLm  is the market allocation of labor to the widget industry given by  

 
widgetsL N *H N *Qm m m m

•= +  . (6.27) 

From the point of view of trade-oriented CGE modelling, what the Dixit-
Stiglitz model underlines for us is that the introduction of different market-
structure assumptions across industries opens the possibility of tariff-induced 
mitigation or exacerbation of distortions in inter-industry resource allocation. For 
example, if protection of the monopolistically competitive widget industry 
induces the market economy to allocate resources to widgets away from the 
purely competitive thingamajig industry, then we may detect a welfare benefit 
that would be missed in a model invoking the blanket assumption of pure 
competition.45   

While only hard empirical research can establish convincingly the 
quantitative importance for trade policy of inter-industry resource distortions 

                                                            
44  In solving this problem, we set up the Lagrangian and derive two first order 
conditions by differentiating with respect to N and Q• .  The second of these conditions 
gives an expression for the Lagrangian multiplier in terms of N.  Substituting this into the 
first condition shows that ( )Q 1 *H Q• •= s − = m .  Then (6.26) and (6.27) give N= Nm.  
45  For an example of a relatively simple model of trade that emphasizes the welfare 
effects of resource transfers between sectors with different market structures, see 
Balistreri et al.  (2010).   
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related to market structure, Table 10 is indicative. For selected values of s and a, 
the table shows for our Dixit-Stiglitz model the market level of welfare relative to 
the planner level, calculated via (6.23) to (6.25) according to  

 * (1 )
( 1)

* (1 )
( 1)

QWelfare N R* *
Welfare N Q R

(1 ) (1 )*
1

s
−

s−
•

•

s
−

s−

    
=     
    

s − − s− −   =    s s−   

a a amm m m

p p p p

a aa a

 (6.28) 

The table gives a welfare cost of over 2 per cent (Welfare ratio < 0.98) only when 
total employment is split evenly (a = 0.50) between thingamajigs, in which price 
equals marginal cost, and widgets, in which price exceeds marginal cost by 50 
per cent [s=3 giving s/(s-1) = 1.5]. In empirical applications we would not expect 
to find large parts of the economy with markups as extreme as 50 per cent 
together with large parts with markups as low as zero and strong possibilities for 
transfer of resources between the two parts (Cobb-Douglas preferences). A 
typical markup number that we find in empirical studies is 20 per cent [s=6, 
giving s/(s-1) = 1.2], see for example Table 1 in Lanclos and Hertel (1995). 
Consequently, the introduction of Krugman and Melitz features in an empirical 
setting with low tariffs is unlikely to produce models in which there is significant 
inter-sectoral resource misallocation. As shown in section 3 and confirmed here, 
with zero tariffs Krugman and Melitz features do not distort the intra-industry 
productivity/variety trade-off. The absence of significant inter- or intra-industry 
distortions in a no-tariff situation supports our view expressed in subsection 6.4.1 
that Krugman and Melitz features alone will not seriously invalidate Armington 
calculations of the welfare effects of increases in tariffs. 

6.5. Experience with GEMPACK solutions of high dimension versions of MelitzGE 

As explained in subsection 6.1, in computing solutions for MelitzGE we use 
GEMPACK software applied to a log-linear representation of the equations. 
Linearization errors are effectively eliminated by imposing the shocks to 
exogenous variables in a series of steps. While all of the solutions discussed in 
subsections 6.1 to 6.4 were based on a tiny version of MelitzGE (2 commodities 
and 2 countries), we foreshadowed that GEMPACK would be a suitable platform 
for solving large Melitz models directly without necessitating decomposition 
algorithms of the type described in section 4. Supporting evidence for this idea is 
given in Table 11.  
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Table 10. Ratio of market to planner welfare in the Dixit-Stiglitz model. 
Inter-variety substitution, s 
Price/marginal-cost, s/(s-1) 
 
Widget share  
in market employment, a 

3.0 
1.50 

3.8 
1.36 

4.0 
1.33 

5.0 
1.25 

6.0 
1.20 

0.05 0.994913 0.997297 0.997629 0.998632 0.999111 
0.25 0.980646 0.989601 0.990861 0.994695 0.996539 
0.50 0.975145 0.986511 0.988125 0.993065 0.995459 
0.75 0.981892 0.990113 0.991286 0.994888 0.996642 
0.95 0.995493 0.997533 0.997824 0.998721 0.999158 

Source: Author calculations. 

Table 11. Computational times for solving MelitzGE in GEMPACK (seconds). 

 No. of countries 

No. of Commodities 2 10 100 
2 1 1 34 
10 1 2 198 
57 1 8 5887 
100 1 15 24312 

Source: Author calculations. 
 
The cells in Table 11 show GEMPACK solution times46 for versions of 

MelitzGE with different numbers of commodities and countries. In all cases, we 
computed the effects of a 10 per cent increase in the power of the tariffs imposed 
by country r, the last country, on imports from all other countries: tsr,c=10 for all 
commodities c and all regions s ≠ r.47  The computations were carried out with 
the GEMPACK code in Appendix F implemented in a standard 64-bit computing 
environment48. Highly accurate solutions were computed with the steps along 
the path of the exogenous variables set according to the 4-8-16 Gragg method49. 
No special effort was made to minimize times beyond condensation/backsolving 
of the type routinely carried out by non-expert GEMPACK users. 
Condensation/backsolving is the process, automated in GEMPACK, of 
                                                            
46  The version of GEMPACK was: source-code GEMPACK (64-bit) using Intel Fortran 
13.1 targeting 64-bit executables. 
47  As we varied the number of countries, r, we also reset the minimum productivity level 
required for a firm to operate on all links: from 2 when r = 2 [see equation (6.1)], to 15 
when r = 10, to 172 when r = 100.  These resets were necessary to maintain the export 
shares in each country’s GDP in the initial database at 0.254.  No resetting was required 
to accommodate variations in the number of commodities, n.   
48  Operating system, Windows 7 64-bit; CPU, Intel i7-4770; Memory, 32GB; HDD, 500GB 
SSD.  An implementation of MelitzGE using 64-bit GEMPACK is necessary to meet the 
memory requirements of the 57-commodity by 100-country simulation and the 100 by 
100 simulation in Table 11.  
49  See section 3.12.2 in Harrison et al. (2014). 
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substituting out high dimension variables using their defining equations and 
recovering their values post simulation. For example, we asked GEMPACK to 
substitute out sd,cP•  (the price charged by the typical c-producing firm on the sd-

link) using the linearized version of the defining Melitz equation (T2.1) in Table 
2. Then post simulation, equation (T2.1) can be used to backsolve for  sd,cP• . 

The times shown in Table 11 are trivial for versions of MelitzGE with up to 
100 commodities and up to 10 countries. Even with large numbers of 
commodities and countries the computational times are comfortably moderate. 
For example, with 57 commodities and 100 countries (about the size of the full-
dimension GTAP database50), GEMPACK accurately solved the MelitzGE model 
in 5887 seconds or about an hour and a half. With 100 commodities and 100 
countries the solution time begins to blow out, 24312 seconds or about 6.7 hours. 
If in a practical situation we were tackling a giant model, then we would seek 
help from GEMPACK experts who can often suggest time-minimizing options.  

While Table 11 shows GEMPACK in a favorable light, it should be 
emphasized that MelitzGE is a very simple model. There are no intermediate 
inputs and only one scarce primary factor in each country. Introduction of 
intermediate inputs and multiple primary factors would certainly increase 
computational times. Other simplifying features of MelitzGE are country 
symmetry (see Figure 1) and identical industries. However we did not take 
advantage of these features in the GEMPACK computations and we don’t think 
that they materially affected computational times. A reasonable interpretation of 
Table 11 is that it establishes an expectation, but not a certainty, that GEMPACK 
would be a highly effective platform for solving empirically-based Melitz models 
of the size and complexity that could be supported by available multi-country 
data on industries and trade flows.51     

7. Concluding remarks 

In this paper we derived the Armington, Krugman and Melitz trade models as 
special cases of a more general model. We showed that the special assumptions 
leading to Melitz are less restrictive than those leading to Krugman, which in 
turn are less restrictive than those leading to Armington. The main objective of 
these derivations was to increase the accessibility of Melitz’ work to CGE 
modellers who have Armington as their frame of reference.  

Armington has been the standard trade specification in CGE models since the 
1970s. In earlier economy-wide trade-oriented models (e.g. Evans, 1972) 
                                                            
50  See https://www.gtap.agecon.purdue.edu/databases/v7/ . 
51  As mentioned in subsection 6.1, this expectation is supported by experience in several 
GEMPACK-based studies with empirical CGE models incorporating elements of 
imperfect competition.   

https://www.gtap.agecon.purdue.edu/databases/v7/
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imported and domestic varieties of a given commodity were treated as perfect 
substitutes. This led to ‘flip-flop’: import shares in domestic markets flipping 
between zero and one in response to seemingly minor changes in relative prices. 
The Armington specification dealt with this problem in a practical and 
empirically justified fashion. Starting in the 1980s, many modellers questioned 
the Armington specification. They were disappointed with Armington-based 
simulations which often show a welfare loss for a country that undertakes a 
unilateral reduction in tariffs, with the terms-of-trade loss outweighing the tax-
carrying-flow or efficiency gain. Under the Krugman specification, there are two 
additional sources of welfare change from a tariff cut: cost changes in the 
domestic economy through economies/diseconomies of scale and increases in 
variety through extra imports which may or may not be offset by a reduction in 
domestic varieties. Melitz adds another source of welfare change. In the Melitz 
model, tariff cuts can increase productivity by weeding out inefficient domestic 
firms.  

Zhai (2008) and Balistreri and Rutherford (2013) find that a CGE model with a 
Melitz specification can give considerably higher welfare gains from a tariff cut 
than a model built with a similar database but with an Armington specification. 
This was not our experience. We found in a Melitz simulation of the effects of a 
tariff change that the extra welfare effects added to Armington by Melitz tended 
to be offsetting. This left our Melitz welfare results much the same as those in an 
Armington model.  

We described this result as an envelope effect. Despite the introduction of 
economies of scale, imperfect competition and technology differences across 
firms, the Melitz model describes an optimizing world. The Melitz market 
outcome is the same as that which would be achieved by a cost-minimizing 
world-wide planner. In particular, the market and cost-minimizing outcomes 
show the same numbers of varieties of each commodity being supplied to 
consumers and the same lengths of production runs by firms. While the 
imposition of tariffs causes the market economy to adjust the number of varieties 
and the lengths of production runs, in total these adjustments carry minimal 
welfare effects. This is in accordance with the envelope theorem concerning the 
welfare implications of adjustments away from an optimal situation.  

As in Armington-based CGE models, the welfare effects in Melitz models of 
changes in tariffs from contemporary low levels are dominated by terms-of-trade 
effects. We do not see Melitz specifications as offering a panacea to those who 
would like to use general equilibrium modelling to support unilateral tariff 
reductions. In a Melitz world, as in an Armington world, tariff reductions make 
most economic sense when carried out on a multi-lateral or bi-lateral basis. With 
Melitz and Armington welfare results being very similar, Melitz modelling will 
not provide support for people who see large gains from free trade. It is difficult 
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to obtain large welfare numbers for the effects of changes in low tariffs in models 
such as Melitz in which agents are fully informed profit and utility maximizers. 
The most likely arguments to support large welfare numbers are still those 
associated with X-efficiency (Leibenstein, 1966), rent seeking (Krueger, 1974), 
technology transfer (Tarr, 2013) and pro-competitive or cold-shower effects 
(Chand, 1999).  

In analysing the North American Free Trade Agreement, Kehoe (2005), 
Shikher (2012) and others have argued that Armington CGE models 
underestimate the extent to which tariff cuts create trade. They argue that other 
specifications including that of Melitz give larger and more realistic trade and 
welfare responses. However, as illustrated in subsection 6.4, MelitzGE results for 
the effects of tariff cuts on trade and welfare can be reproduced in an Armington 
model simply by running the Armington model with an inter-country 
substitution elasticity (Armington elasticity) higher than the inter-variety 
substitution elasticity used in the corresponding Melitz model (e.g. 8.45 for 
Armington versus 3.8 for Melitz, Figure 4). On this basis, we can interpret Melitz 
as providing a micro-theoretic foundation for an Armington implementation. 
The emergence of Melitz is not a reason for either abandoning Armington-based 
CGE modelling when it is practical to retain it or a reason to be apologetic about 
results from Armington models. Equally, close equivalence of Armington and 
Melitz results is not a reason for de-prioritizing CGE research on models with 
Melitz features. In the long run, this research has the potential to take CGE 
modelling to a higher level of realism and policy relevance. In the short run, 
what the MelitzGE results underline is the importance for model-based policy 
analysis of empirical effort devoted to the estimation of price elasticities 
describing trade responses. In using these estimates in CGE models we need to 
calibrate the relevant CGE parameters so that we get trade responses that are 
consistent with econometric evidence on the sensitivity of imports to price 
changes. The calibrated values for CGE parameters will depend on the model 
structure.  

In solving Melitz models, we used GEMPACK software which works with 
linear equations expressed in percentage changes of variables. Previous Melitz 
computations have been carried out with GAMS software relying on non-linear 
levels representations of equations. The GEMPACK approach proved highly 
efficient and simplified the solution of Melitz models. Using GEMPACK we are 
able to avoid Balistreri and Rutherford’s iterative decomposition approach which 
generates Melitz solutions by iterating between Melitz and Armington models.  

Nevertheless, the idea underlying Balistreri and Rutherford’s decomposition 
approach is highly suggestive. Using their idea we were able to decompose 
Melitz results for the welfare effects of a tariff change into five components 
computed via an Armington model. Our welfare decomposition allowed us to 
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identify the offsetting nature of the contributions to welfare that Melitz adds to 
Armington. 
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Appendix A. Mathematical details of the Melitz model in Table 2 

This appendix provides the mathematical details necessary to understand 
fully the elimination of the firm dimension in the derivation of the Melitz 
versions of (T2.2), (T2.4), (T2.6) and (T2.7). We also derive the Melitz equations 
(T2.8) and (T2.11). At the end of this appendix we justify (5.2).  

In setting out the mathematics, we assume where convenient that the possible 
productivity values across firms are continuous, rather than discrete. Following 
Melitz, we assume that productivity values in country s form a Pareto 
distribution: 

 ( ) 1
sg ,  1−α−Φ = αΦ Φ ≥  (A.1) 

where α is a positive parameter. Under (A.1), we assume that the lowest 
potential productivity value is 1. This assumption can be made without loss of 
generality through a suitable choice of units for labour. 

From (A.1) we obtain  
 

( )
min

s ming d
∞

−α

Φ

Φ Φ = Φ∫  (A.2) 

 (A.2) means that the proportion of productivity values in country s that are 
greater than any given level, minΦ , is min

−αΦ . Thus the proportion of firms in 
country s with productivity of at least min(s,d)Φ , i.e. the proportion of firms 

(Nsd/Ns) operating on the sd-link is min(s,d)
−αΦ . This justifies the Melitz version of 

(T2.8). 
Next, we apply (A.1) and (T2.8) in a continuous version of (2.19). This gives 
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Φ = Φ α Φ Φ Φ∫  (A.3) 

that is 
 

1 1
sd min(s,d)( 1)
s− s−
•

 α
Φ = Φ α − s− 

  . (A.4) 

In deriving (A.4), we assume that  
 α > (σ-1) (A.5) 

This doesn’t have any obvious economic interpretation. However, without it, the 
integral on the RHS of (A.3) is unbounded. From (A.4), we get 

 
sd min(s,d)•Φ = βΦ   . (A.6) 
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where 
 1 ( 1)

( 1)

s−
 α

β =  α − s− 
  . (A.7) 

This justifies the Melitz version of (T2.11). 
Now we turn to the derivation of the Melitz version of (T2.2). From the AKME 

version of (T2.1), we can see that the ratio of prices for any two firms on the sd-
link is the ratio of their productivities raised to the power -1. Applying this idea 
in the AKME version of (T2.2) gives52  

 1
1 1 1 k
d s k sd sd

s k S(s,d) sd

P N P
s−

−s −α− s −s
•

∈ •

 Φ
= αΦ d  Φ 
∑ ∑   , (A.8) 

which can be rewritten in continuous format as 
 

min(s ,d )

1 1 1 1 1
d s sd sd sd

s
P N P d

∞
−s −s −s s −α− s−

• •
Φ

 
 = αΦ d Φ Φ Φ
 
 

∑ ∫   . (A.9) 

Applying (A.3) gives 
 ( )1 1 1 1

d s sd sd sd min(s,d) sd
s

P N P−s −s −s s −α s−
• • •= Φ d Φ Φ∑   . (A.10) 

Via the Melitz version of (T2.8), (A.10) reduces to  
 ( )1 1

d sd sd sd
s

P N P−s s −s
•= d∑   . (A.11) 

which leads to the Melitz version of (T2.2). 
The starting point for deriving the Melitz version of (T2.4) is the AKME 

version. With ksdg  equal to 1, we write this as: 
 ( 1) ( 1)

sd s s k ksd
k S(s,d)

Q N g ( )Qs− s s− s

∈

= Φ∑   . (A.12) 

Then continuing to assume that ksdg  = 1, we use the AKME versions of (T2.3) and 
(T2.1) together with (A.1) to obtain 

 1
( 1) 1 ( 1)k
sd s k sd

k S(s,d) sd

Q N Q
s−

s− s −α− s− s
•

∈ •

 Φ
= αΦ  Φ 
∑   , (A.13) 

 
that is,   
                                                            
52  As in Table 1, we assume that ksdg =1 for all k. 
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 ( 1) ( 1) 1 1 1
sd s min(s,d) sd sd min(s,d) k k

k S(s,d)
Q N Qs− s −α s− s −s α −α− s−

• •
∈

= Φ Φ Φ αΦ Φ∑   . (A.14) 

Via (A.3), (A.14) simplifies to 
 ( 1) ( 1)

sd s min(s,d) sdQ N Qs− s −α s− s
•= Φ   . (A.15) 

The Melitz version of (T2.8) gives a further simplification, leading to the Melitz 
version of (T2.4). 

To derive the Melitz version of (T2.6), we start by writing the AKME version 
as 

 
1

s s k ksd ksd sd sd s s s s
d k S(s,d) d

1tot N P Q N F W N H W−α−

∈

P = αΦ − −
s∑ ∑ ∑ . (A.16) 

In deriving (A.16), we used the AKME versions of (T2.5) and (T2.1) with η set at 
–σ. Via the AKME version of (T2.3), (A.16) becomes  

 
1 1 1

s s k k sd sd sd
d k S(s,d)

sd sd s s s s
d

1tot N P Q

N F W N H W .

−α− s− −s
• • •

∈

P = αΦ Φ Φ
s

− −

∑ ∑

∑
 (A.17) 

Applying (A.3) and (T2.8), we simplify (A.17) to 
 

s sd sd sd sd sd s s s s
d d

1tot N P Q N F W N H W• •P = − −
s∑ ∑   , (A.18) 

which quickly leads to the Melitz version of (T2.6). 
The final task in justifying the elimination of the firm dimension from the 

Melitz equations is to derive the Melitz version of (T2.7). Applying (T2.3) and 
(T2.1) in the first term on the RHS of the AKME version of (T2.7) and simplifying 
the second term gives 

 
1 1 sd

s s k k sd sd s s
d k S(s,d) dsd

QL N N F N H−α− s− •
s

∈ •

= αΦ Φ + +
Φ∑ ∑ ∑   . (A.19) 

Then via (A.3) and (T2.8), (A.19) reduces to the Melitz version of (T2.7). 

Deriving equation (5.2) 

In (5.2) we assume that the landed-duty-paid value of trade on the sd-link, Vsd,  is 
the value for the typical firm, sd sdP Q• • , times the number of trading firms, Nsd. To 
derive (5.2) we start from  

 
sd s k ksd ksd

k S(s,d)
V N g( )P Q

∈

= Φ∑   , (A.20) 
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that is, the landed-duty-paid value of widgets sent from s to d is the value, 
ksd ksdP Q , sent by a k-class firm times the number of such firms, s kN g( )Φ , 

aggregated over all k in S(s,d). Using the AKME versions of (T2.1) and (T2.3) and 
continuing to assume that ksdg =1 for all k, we obtain  

 
sd k

sd s k sd sd
k S(s,d) k sd

V N g( )P Q
s

•
• •

∈ •

 Φ Φ
= Φ  Φ Φ 
∑   . (A.21) 

Simplifying and using (2.19) leads to (5.2). 
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Appendix B. Equivalence between worldwide cost minimizing and the AKME 
model 

Proof of proposition (3.2): Cost minimizing AKME⇒   

Let min(s,d)Φ , Ns, Qksd and dΛ  be a solution to (3.5) to (3.9) for given values of 

the exogenous variables Ws, Qd and Tsd. Let Pd and Pksd be defined by (3.10) and 
(3.11) and define Qsd, Pksd, Ptots and Ls as in (T2.4) – (T2.7) of the AKME model. 
We show that min(s,d)Φ , Ns, Qksd, Pd, Pksd, Qsd, Pksd, Ptots and Ls  then satisfy the 

remaining AKME equations, (T2.1) to (T2.3) and (T2.8) to (T2.10), and is therefore 
an AKME solution.  

Equations (T2.8) and (T2.1) are satisfied: (T2.8) is the same as (3.6) and under 
(3.1), (T2.1) is the same as (3.11).  

From (3.9) – (3.11) we have  
 1/ 1/

ksd d d sd ksdP P Q Q , k S(s,d)s − s= d ∈    . (B.1) 

Hence 
 

d
ksd sd d

ksd

PQ Q k S(s,d) .
P

s

s  
= d ∈ 

 
 (B.2) 

Under (3.1) this establishes (T2.3). 
From (3.7) 
 

sd min(s,d) ( 1)/
s sd d sd min(s,d)

min(s,d)

T Q
W F Q 0 .s− s

 
− + + Λ d =  Φ 

 (B.3) 

Combining (3.10) and (B.2) gives 
 1/

ksd d sd ksdP Q .− s= Λ d  (B.4) 

In particular  
 1/

min(s,d) d sd min(s,d)P Q .− s= Λ d  (B.5) 

Putting (B.5) into (B.3) gives  
 

sd min(s,d)
s sd min(s,d) min(s,d)

min(s,d)

T Q
W F P Q 0

 
− + + =  Φ 

  , (B.6) 

establishing (T2.10).  
From (3.8) and (B.4) we obtain  
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sd ksd

s s k sd
d k S(s,d) k

1/
( 1)/ksd ksd

s s s k sd ksd
d k S(s,d) sd

T QW g ( )* F

P QW H g ( ) Q 0.

∈

s
s− s

∈

 
Φ + Φ 

+ − Φ d =
d

∑ ∑

∑ ∑
 (B.7) 

Simplifying, rearranging and multiplying through by Ns gives  
 

sd ksd
s s s k sd s s s

d k S(s,d) k

s s k ksd ksd
d k S(s,d)

T QW N g ( )* F N W H

N g ( )P Q .
∈

∈

 
Φ + + Φ 

= Φ

∑ ∑

∑ ∑
 (B.8) 

Via (T2.5) and (T2.6), (B.8) leads to (T2.9).  
Now all that remains is to establish (T2.2). We start by rearranging (B.2) as 
 1 ( 1)/ (1 )/ 1

sd ksd ksd sd d dP Q Q P .s −s s− s −s s −sd = d  (B.9) 

Then multiplying through by Nsgs(Φk), aggregating over s and k, and using (3.5) 
we obtain (T2.2) under assumption (3.1).  

Proof of proposition (3.3): AKME ⇒ First-order optimality conditions for cost 
minimizing 

Let min(s,d)Φ , Ns, Qksd, Pd, Pksd, Qsd, Pksd, Ptots and Ls satisfy (T2.1) to (T2.10) for 

given values of the exogenous variables Ws, Qd and Tsd. Define dΛ  by (3.10). We 
show that min(s,d)Φ , Ns, Qksd and dΛ  is a solution to (3.5) to (3.9).  

Condition (3.6) is the same as (T2.8).  
Under (3.1), (T2.3) gives  
 ( 1)/ ( 1)/ 1 1

sd ksd d sd d ksdQ Q P Ps− s s− s s s− −sd = d . (B.10) 

Multiplying through by s s kN g ( )Φ , summing over all s and all k S(s,d)∈  and 
using (T2.2) and (3.1) gives (3.5). 

Equations (T2.5) and (T2.10) give  
 

s sd
min(s,d) min(s,d) min(s,d) sd s

min(s,d)

WP Q Q F W 0
 Τ

− − =  Φ 
. (B.11) 

To establish (3.7) we need to eliminate Pmin(s,d) and introduce dΛ . We do this via 
(T2.3), (3.1) and (3.10) which give 

 1/
ksd sd d ksdP Q− s= d Λ  (B.12) 

and, in particular 
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 1/
min(s,d) sd d min(s,d)P Q− s= d Λ       . (B.13) 

Multiplying (B.11) through by s s kN g ( )Φ  and using (B.13) quickly leads to (3.7).  
From (T2.5), (T2.6) and (T2.9) we obtain 
 

s sd
s k ksd ksd ksd sd s s s

d k S(s,d) k

Wg ( ) P Q Q F W H W 0
∈

  Τ
Φ − − − =  Φ  

∑ ∑ . (B.14) 

Then, substituting from (B.12) gives (3.8). 
To obtain (3.9), we start from (B.12) and then use (T2.1).  
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Appendix C. Establishing the validity of the Balistreri-Rutherford 
decomposition algorithm 

We define a Balistreri-Rutherford (BR) solution as a list of values of Melitz 
and Armington variables that satisfy the Melitz versions of (T2.1) to (T2.12) 
together with (4.1), (4.5) to (4.7) and (T3.1) to (T3.7). That is, a BR solution is what 
appears after implementation of steps 1 to 4 of the algorithm set out in subsection 
4.1.3. 

A converged BR solution is one that also satisfies  
 

d,cQCA(d,c) Q c,d= ∀  (C.1) 

and 
 

dWA(d) W d= ∀ . (C.2) 

We prove that a converged BR solution reveals a Melitz GE solution. 

Proof 

Assume that we have a converged BR solution. Then the Melitz variables in 
this solution satisfy the Melitz versions of (T2.1) to (T2.12) and (4.1). We can 
compute the Melitz value for total employment in country s, LTOTs, from (4.3) 
and then the Melitz value for GDPd from (4.2). To prove the proposition it will be 
sufficient to demonstrate that under (C.1) and (C.2) the variables in our BR 
solution satisfy (4.4). 

To do this, we will demonstrate that 
 Rsd,c = RA(s,d,c), (C.3) 

 
sLTOT LTOTA(s)=  (C.4) 

and 
 

d,cP PCA(d,c)=   . (C.5) 

In combination with (4.2), (C.2) and (T3.6), equations (C.3) and (C.4) are enough 
to prove that  

 
dGDPA(d) GDP=  (C.6) 

and then (T3.7), (C.5) and (C.1) lead to (4.4). 
We start on (C.3). From  (4.6) we have 
 

( ) ( )
sd,c

sd,c sd,c sd,c sd,c

R
TA s,d,c 1

P Q N R• •

− =
−

   . (C.7) 

Then substituting from (C.7) and (T3.3) into (T3.5) gives 
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( ) ( )

( ) ( )
( )

sd,c

sd,c sd,c sd,c sd,c

R
RA s,d,c

P Q N R

PCA d,c
QCA(d,c)* A s,d,c * *WA(s)

PA s,d,c
*

A(s,c)

• •

s

 
=   − 

  
 d 
  
 Φ 
 
 

 (C.8) 

Then using (4.7) we obtain 

 

( ) ( )

( ) ( )

( )
( ) ( )

( )

sd,c

sd,c sd,c sd,c sd,c

sd,c sd,c sd sd,c

s

d,c

s

td,c td,c td,c
t

d,c

R WA(s)RA s,d,c *QCA(d,c)*
A(s,c)P Q N R

P Q N R
A s,c *

W*
Q

W *TA s,d,c
A s,c PCA d,c

* * *
PA s,d,cP Q N

Q

• •

• •

• •

 
=    Φ− 

 −
Φ 

 
 
  
 

 
  
  Φ  
        

  

∑

s


  

(C.9) 

Using (T3.1) and the properties of a converged solution, (C.1) and (C.2), (C.9) can 
be simplified to  

 

( ) sd,c
td,c td,c td,c

t

d,c

PCA(d,c)RA s,d,c R *
P Q N

Q

s

• •

 
 
 
 =
 
 
 
 

∑
   . (C.10) 

From (T3.2), (4.7) and (T3.1), we have 
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( )
( ) ( )

( )
( ) ( )

( )

sd,c sd,c sd,c sd,c

1 s

s d,c

s
1

td,c td,c td,c
t

d,c

P Q N R
A s,c *

WPCA d,c
Q

W *TA s,d,c
A s,c WA(s)*TA s,d,c

* *
A s,cP Q N

Q

• •

−s

s

−s

• •


−

Φ
= 




 
      Φ           Φ            

   

∑

∑

 (C.11) 

Then using (C.2) and (4.6) and simplifying gives 
 

( ) sd,c sd,c sd,c

s d,c

P Q N
PCA d,c

Q
• •= ∑     . (C.12) 

Now from (C.10) and (C.12) we get (C.3). 
Next we move to the derivation of (C.5). Using (T2.3) to eliminate sd,c

sd  from 

(T2.2) gives 
 

( )
1

1
sd,c sd,c 1

d,c sd,c sd,c
s d,c d,c

Q P
P N P

Q P

s −s
• • −s

•

  
 =      
∑  (C.13) 

which simplifies to  
 

sd,c sd,c sd,c
d,c

s d,c

N Q P
P

Q
• •= ∑    . (C.14) 

Comparing (C.14) and (C.12) establishes (C.5). 
Finally we work on (C.4). Substituting from (T3.3) and (4.7) into (T3.4) gives  
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( ) ( )

( )
( ) ( )

( )

c,d

1

sd,c sd,c sd,c sd,c

s

d,c

s

td,c td,c td,c
t

d,c

QCA(d,c)LTOTA(s)
A(s,c)

P Q N R
A s,c *

W*
Q

W *TA s,d,c
A s,c PCA d,c

* *
PA s,d,cP Q N

Q

s
• •

s

• •




=  Φ




 −
Φ 

 
 
  
 

 
      Φ   
           

   

∑

∑
 

(C.15) 

 
 

Using (T3.1), (C.2), (C.12) and (C.1) and simplifying gives 
 ( )sd,s sd,c sd,c sd,c

c,d s

P Q N R
LTOTA(s)

W
• • −

=∑     . (C.16) 

Now we eliminate Rsd,c via (4.1): 
 

( ) s
sd,c sd,c sd,c sd,c sd,c sd,c

sd,c

c,d s

WP Q N T 1 N Q
LTOTA(s)

W

• • •
•

 
− − Φ = ∑      

. 

(C.17) 

Through (T2.1)  we obtain 
 

sd,c sd,c sd,c sd,c

c,d s sd,c

P Q N T 1LTOTA(s) 1
W

• •  
= + − Τ s s 
∑     . (C.18) 

From the Melitz versions of (T2.9), (T2.5) and (T2.6), we have  
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s sd,c

sd,c sd,c sd,c sd,c sd,c s s,c s,c s
d dsd,c

W
0 N P Q N F W N H W• •

•

 Τ
= − − −  Φ 
∑ ∑  (C.19) 

Using (C.19) we can eliminate the F and H terms from (T2.7). Then, adding over 
c, we obtain  

 
sd,c sd,c sd,c sd,c

s,c sd,c sd,c
c c,d c,dsd,c s sd,c

N Q P
L N Q

W
• •

•
• •

 Τ
= + −  Φ Φ 

∑ ∑ ∑    . (C.20) 

Using (T2.1) gives 
 

sd,c sd,c sd,c
s,c sd,c sd,c

c c,d c,dsd,c s

N Q P
L N Q

W
• •

•
•

 
= +  Φ s 

∑ ∑ ∑  (C.21) 

which can be rearranged via (T2.1) as  
 

sd,c sd,c sd,c sd,c
s,c

c c,d s sd,c

P Q N T 1L 1
W

• •  
= + − Τ s s 

∑ ∑   . (C.22) 

Comparing (C.18) and (C.22) and using (4.3)we see that (C.4) holds. 
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Appendix D. Showing that an increase in country 2’s tariffs doesn’t affect the 
number of firms in country 2 

In the tariff simulations reported in subsection 6.3 we increased T12,c for all c 
by the same percentage. This resulted in: changes in the number of c-firms in 
country 1, N1,c; changes in the number of c-firms operating on all international 
links, N12,c and N21,c; but curiously no change that the number of c-firms in 
country 2, N2,c. In this appendix we show why N2,c is constant. As it turns out this 
is not a fundamental or robust result. It depends on a series of special 
assumptions.  

In demonstrating that N2,c is constant under the conditions imposed in 
subsection 6.3, we start by combining the Melitz versions of (T2.6) and (T2.9) for 
country 2: 

 
2d,c 2d,c 2,c 2,c 2,c

d
0 N N H W•= P −∑   . (D.1) 

Now using (T2.1) and (T2.5) we obtain  
 

2d,c 2d,c
2d,c 2 2 2d,c 2,c 2,c 2

d 2d,c

Q
0 N W W *F N H W

( 1)
•

•

 Τ 
= − −  s − Φ   
∑  (D.2) 

Next we note that production labor in the typical firm in country 2 producing 
c for sale on the 2-to-d link, 2d,c 2d,cQ• •Φ , is constant. This result can be derived as 

follows. From (T2.11) and (T2.12) we see that 2d,c 2d,cQ• •Φ  equals 
1

min(2,d),c min(2,d),c*Qs−β Φ . With F2d,c and T2d,c fixed, (T2.10) implies that 

min(2,d),c min(2,d),cQ Φ is fixed and hence 2d,c 2d,cQ• •Φ  is fixed.  

Eliminating W2 in (D.2) and using the fixity of 2d,c 2d,cQ• •Φ , F2d,c, T2d,c and 2,cH , 

we create a changes version:  
 

2d,c 2d,c
2d,c 2d,c 2d,c 2d,c 2,c 2,c 2,c

d 2d,c

Q
0 N *n F *n N H *n

( 1)
•

•

 Τ 
= − −  s − Φ   
∑  (D.3) 

where 2d,cn and 2,cn are percentage change in 2d,cN and 2,cN . With aggregate 

employment fixed in country 2, the symmetry of industries 1 and 2 implies that 
employment in each industry is fixed. Thus, from (T2.7) we obtain 

 
2d,c 2d,c

2d,c 2d,c 2d,c 2d,c 2,c 2,c 2,c
d d2d,c

N Q
0 *n N F *n N H *n•

•

= + +
Φ∑ ∑ . (D.4) 

In setting up MelitzGE we assumed that T2d,c = T2,c  for all d. In fact we 
assumed that T2d,c is initially 1 for all c. But this is not important. The important 
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thing is that country 2 faces the same tax/tariff rate on all trade links. With T2d,c 
the same for all d, we can move the T term in (D.3) to the outside of the 
summation in which it occurs. Under this assumption, adding (D.3) and (D.4) 
yields 

 
2d,c 2d,c

2d,c
d 2d,c

N Q
0 *n•

•

=
Φ∑    . (D.5) 

Combining (D.5) and (D.4) implies that 
 

2,c 2,c 2,c 2d,c 2d,c 2d,c
d

N H *n N F *n= −∑   . (D.6) 

Substituting from (T2.10), (T2.11) and (T2.12) into (D.6) gives 
 

2,c 2d,c
2,c 2,c 2,c 2d,c 2d,c1

d 2d,c

T Q
N H *n * N * n

( 1)*
•

s−
•

= −
s− β Φ∑  (D.7) 

and combining (D.5) and (D.7) gives 
 

2,cn 0 c= ∀   . (D.8) 

This result is an artefact of the particular data setup of MelitzGE. It depends 
on the tariff/tax rates applying to country 2’s c-firms on the 2-to-1 link being the 
same as those on the domestic 2-to-2 link. It also depends on the identical data 
setup in country 2 for industries/commodities 1 and 2. It was this assumption, 
combined with the constancy of aggregate employment in country 2 and the 
uniformity of the tariff shocks imposed by country 1 that led to the constancy of 
employment in each industry in country 2, enabling us to derive (D.4).  
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Appendix E. Deriving the Armington decomposition of Melitz welfare  

Section 4 and Appendix C explain that a solution to the Melitz general 
equilibrium model specified by the Melitz versions of (T2.1) – (T2.12) and by (4.1) 
– (4.4) can be computed via the Armington model specified by (T3.1) – (T3.7). 
This requires that we: (a) adopt the same numeraire in the Armington model as 
in the Melitz model; (b) set the Armington production technology coefficients, 
tariff rates and conversion technology coefficients according to (4.5) – (4.7); and 
(c) assume the same level of aggregate employment in each country  in the two 
models, that is 

 
dLTOTA(d) LTOT d= ∀   . (E.1) 

Under (a) to (c),  
 

d,cQCA(d,c) Q d,c= ∀  (E.2) 

and 
 

d,cPCA(d,c) P d,c= ∀  (E.3) 

where  
QCA(d,c) and Qd,c are the Armington and Melitz levels of consumption of 
composite commodity c in country d; and 
PCA(d,c) and Pd,c are the Armington and Melitz prices of composite 
commodity c in country d. 

Via (E.2) and (E.3) we can rewrite (6.3) as 
 

c
welfare(d) ZA(d,c)*qca(d,c) d= ∀∑ , (E.4) 

where  
qca(d,c) is the percentage change in QCA(d,c) computed in the Armington 
model satisfying (a) to (c) and ZA(d,c) is the Armington share of d’s 
expenditure devoted to commodity c. With Cobb-Douglas preferences, 
ZA(d,c) is a parameter and is the same as µd,c in Table 3. 
Continuing to assume that (a) to (c) are satisfied, we work with the 

Armington model in Table 3 to derive the decomposition equation in Figure 2. 
Using the notational conventions explained at the foot of Figure 2, we start by 
writing Table 3 in percentage change and change form as: 

 pa(s,d,c) wa(s) ta(s,d,c) a(s,c)= + −f  (E.5) 
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s

s

pca(d,c) SA(s,d,c)*pa(s,d,c)

ˆ* SA(s,d,c)* a(s,d,c)
1

=

s
+ d

−s

∑

∑
 (E.6) 

 

( )
ˆqa(s,d,c) qca(d,c) * a(s,d,c)

pca(d,c) pa(s,d,c)
= +s d

+s −
 (E.7) 

 

( ) ( )( )
c,d

LTOTA(s)*ltota(s)

QA s,d,c
* qa s,d,c a(s,c)

A(s,c)

=

 
−f Φ 

∑
 (E.8) 

 

( )}
( )

100* RA(s,d,c)

TA(s,d,c)*QA(s,d,c)*WA(s)
A(s,c)

* ta(s,d,c) qa(s,d,c) wa(s) a(s)

QA(s,d,c)*WA(s) * qa(s,d,c) wa(s) a(s)
A(s,c)

∆ =


 Φ

+ + −f

− + −f
Φ

 (E.9) 

 ( )
( )

c,s

GDPA(d)*gdpa(d) WA(d)*LTOTA(d)* wa(d) ltota(d)

100* RA s,d,c

= +

+ ∆∑  (E.10) 

 pca(d,c) qca(d,c) gdpa(d)+ =   . (E.11) 

The only new notation in these equations is SA(s,d,c) and ∆RA(s,d,c). SA(s,d,c) is 
the share of d’s expenditure on c that is devoted to source s. It is given by53: 

 

j

PA(s,d,c)*QA(s,d,c)SA(s,d,c)
PA( j,d,c)*QA( j,d,c)

=
∑

 (E.12) 

or equivalently by54  

                                                            

53  In deriving (E.6), we use (T3.3) to obtain 
1

1
j

A(s,d,c) *PA(s,d,c)SA(s,d,c)
A( j,d,c) *PA( j,d,c)

s −s

s −s

d
=

d∑
 

54  (T3.2) and (T3.3) imply that 
j

PCA(d,c)*QCA(d,c) PA( j,d,c)*QA( j,d,c)= ∑ . 
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 PA(s,d,c)*QA(s,d,c)SA(s,d,c)
PCA(d,c)*QCA(d,c)

=   . (E.13) 

∆RA(s,d,c) is the change in RA(s,d,c). Because tariff collection can be zero, we use 
the change rather than the percentage change in RA(s,d,c). 

Our first step in deriving the decomposition equation is to substitute from 
(E.11) and (E.6) into (E.4). This gives 

 

c s

c s

welfare(d) gdpa(d) ZA(d,c)*SA(s,d,c)*pa(s,d,c)

ˆZA(d,c)*SA(s,d,c)* a(s,d,c)
1

= −

s
− d

−s

∑∑

∑∑
 (E.14) 

Now we work on gdpa(d). We substitute from (E.9) into (E.10) to obtain 

 

( )

( )}
( )

c,s

c,s

GDPA(d)*gdpa(d)
WA(d)*LTOTA(d)* wa(d) ltota(d)

TA(s,d,c)*QA(s,d,c)*WA(s)
A(s,c)

* ta(s,d,c) qa(s,d,c) wa(s) a(s)

QA(s,d,c)*WA(s) * qa(s,d,c) wa(s) a(s)
A(s,c)

=

+


+  Φ

+ + −f

− + −f
Φ

∑

∑

 

(E.15) 

Substituting from (E.5) into (E.15) and using (T3.1) gives 
 

( )
( )

( ) }

c,s

c,s

GDPA(d)*gdpa(d)
WA(d)*LTOTA(d)* wa(d) ltota(d)

PA(s,d,c)*QA(s,d,c)* pa(s,d,c) qa(s,d,c)

QA(s,d,c)*PA(s,d,c)
TA(s,d,c)

* qa(s,d,c) pa(s,d,c) ta(s,d,c)

=

+

+ +


− 



+ −

∑

∑

 

(E.16) 

We rearrange (E.16) as 
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( )

( )

c s

c

GDPA(d)*gdpa(d)
WA(d)*LTOTA(d)*ltota(d) WA(d)*LTOTA(d)*wa(d)

PA(s,d,c)*QA(s,d,c) * TA(s,d,c) 1 *qa(s,d,c)
TA(s,d,c)

PA(F,d,c)*QA(F,d,c) * pa(F,d,c) ta(F,d,c)
TA(F,d,c)

PA(d,F,c)*QA(d,F,c) * pa(d
TA(d,F,c)

=
+

+ −

− −

+

∑∑

∑

( )
c

c

c

c s

c

, F,c) ta(d,F,c)

PA(d,d,c)*QA(d,d,c) * ta(d,d,c)
TA(d,d,c)

PA(d,F,c)*QA(d,F,c) * ta(d,F,c)
TA(d,F,c)

PA(s,d,c)*QA(s,d,c)*pa(s,d,c)

PA(d,d,c)*QA(d,d,c) *pa(d,d,c)
TA(d,d,c)

PA(d,F,c)*QA(d,F,c)
TA(d,F

−

+

+

+

−

−

∑

∑

∑

∑∑

∑

c
*pa(d,F,c)

,c)∑  

(E.17) 

In (E.17), as in Figure 2, we use the argument F to denote foreign country (not 
d). From here, we: use (E.5) to substitute out pa in the last two terms on the RHS 
of (E.17); cancel out some ta terms; separate newly introduced wa and fa terms; 
and use (T3.4) and (T3.1) to eliminate wa terms. These operations give  

 

( )

( )

( )

c s

c

c

GDPA(d)*gdpa(d)
WA(d)*LTOTA(d)*ltota(d)

PA(s,d,c)*QA(s,d,c) * TA(s,d,c) 1 *qa(s,d,c)
TA(s,d,c)

PA(F,d,c)*QA(F,d,c) * pa(F,d,c) ta(F,d,c)
TA(F,d,c)

PA(d,F,c)*QA(d,F,c) * pa(d,F,c) ta(d,F,c)
TA(d, F,c)

PA(

=

+ −

− −

+ −

+

∑∑

∑

∑

c s

c, j

s,d,c)*QA(s,d,c)*pa(s,d,c)

PA(d, j,c)*QA(d, j,c) * a(d,c)
TA(d, j,c)

+ f

∑∑

∑

 (E.18) 

Now we return to (E.14). Substituting from  (E.18) into (E.14) gives 
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( )

( )

( )

c s

c

c

GDPA(d)*welfare(d) WA(d)*LTOTA(d)*ltota(d)
PA(s,d,c)*QA(s,d,c) * TA(s,d,c) 1 *qa(s,d,c)

TA(s,d,c)
PA(F,d,c)*QA(F,d,c) * pa(F,d,c) ta(F,d,c)

TA(F,d,c)
PA(d,F,c)*QA(d,F,c) * pa(d,F,c) ta(d,F,c)

TA(d,F,c)

=

+ −

− −

+ −

+

∑∑

∑

∑

c, j

c s

c,s

c,s

PA(d, j,c)*QA(d, j,c) * a(d,c)
TA(d, j,c)

PA(s,d,c)*QA(s,d,c)*pa(s,d,c)

GDPA(d)* ZA(d,c)*SA(s,d,c)*pa(s,d,c)

ˆGDPA(d)* ZA(d,c)*SA(s,d,c)* a(s,d,c)
1

f

+

−

s
− d

−s

∑

∑∑

∑

∑

 
(E.19) 

Recalling that ZA(d,c) is the same as µd,c and using (T3.7) and (E.13) we see 
that 

 GDPA(d)* ZA(d,c)*SA(s,d,c) PA(s,d,c)*QA(s,d,c)=  (E.20) 

This allows us to cancel the second-last and third-last terms in (E.19). Equation 
(E.20) also implies that 

 

c,s
GDPA(d) PA(s,d,c)*QA(s,d,c)=∑  (E.21) 

Using (E.20) and (E.21) in (E.19) then gives us the decomposition equation in 
Figure 2.   
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Appendix F. GEMPACK code for MelitzGE and a closure file for running 
Melitz and Armington in linked mode  

This appendix sets out the GEMPACK code for MelitzGE (Listing 1) together 
with a closure file suitable for running Melitz and Armington in linked mode 
(Listing 2). Annotations referencing relevant equations and sections of this paper 
are provided. Readers who would like to work with the code can download it 
from the CoPS website: 

http://www.copsmodels.com/archivep/tpmj0140.zip. 
Enquires about GEMPACK licences can be made by contacting GEMPACK staff 
via sales@gempack.com 

http://www.copsmodels.com/archivep/tpmj0140.zip
mailto:sales@gempack.com
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Listing 1. GEMPACK code for MelitzGE (mel43aux.tab) 
!**************************************************************************! 
! GEMPACK program for solving MelitzGE and Armington Auxiliary 
  model                                                                    ! 
!                                                                        . ! 
!**************************************************************************! 
 
File    SETS  #  Commodities and countries # ; 
File    DATA  #  Other data e.g. parameter values #; 
 
Set CNT # Set of regions # read elements from file SETS header "CNT"; 
Set COM # Set of commodities # read elements from file SETS header "COM"; 
 
Coefficient SIZECNT # Size of set CNT #; 
Formula SIZECNT=0; 
Formula SIZECNT = sum(c,CNT, 1); 
Set CNTL = (all,c,CNT: $Pos(c) < SIZECNT);! All countries excluding last ! 
  
Coefficient (Parameter) 
SIGMA # Substitution elasticity between varieties #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_F(c,s,d) # Units of labor required to setup a c-firm for trade on the sd-link #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_T(c,s,d) # Power of tariff on c imposed by d on flows from s #; 
        (All,s,CNT) 
C_W(s) # Wage rate in region s #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PIT(c,s,d) # Profits earned on the sd-link by the typical c-firm on sd-link #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_DELTA(c,s,d) # d's preference for c from s #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PHI_MIN(c,s,d) # Productivity (marginal output/worker) of minimum prod'ty c firm on sd-link #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_N(c,s,d) # Number of firms in region s sending c on the sd-link #; 
        (All,c,COM)(All,s,CNT) 
C_ND(c,s) # Number of c-producing firms in region s #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PHIT(c,s,d)# Productivity (marginal output/worker) of a typical c firm on sd-link #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PT(c,s,d) # Price of c charged by the typical c-producing firm on sd-link #; 
        (All,c,COM)(All,d,CNT) 
C_P(c,d) # Price of the c-composite in region d #; 
        (Parameter) 
ALPHA # Parameter in Pareto distribution of firm productivities #; 
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        (Parameter) 
BETA # Ratio typical prod'ty on link to minimum, determined by sigma and alpha #; 
        (All,c,COM)(All,d,CNT) 
C_QD(c,d) # Demand for composite c in region d # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_Q(c,s,d) # The CES aggregate quantity of c sent on the sd-link # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_QT(c,s,d) # Quantity sent by the typical c-producing firm on the sd-link #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_Q_MIN(c,s,d) # Quantity sent by lowest productivity c-firm operating on the sd-link #; 
        (All,c,COM)(All,s,CNT) 
C_H(c,s) # Fixed setup cost for a c-firm in region s # ; 
        (All,c,COM)(All,s,CNT) 
C_L(c,s) # Employment in the c-industry in region s # ; 
        (parameter) 
LB_C_PHI_MIN  # Minimum productivity for a firm to produce # ; 
        (parameter) 
UB_C_PHI_MIN # Minimum productivity of firms that trade on all links #; 
        (integer, parameter) 
NUMREG #  Number of regions #; 
  
Read SIGMA from file DATA Header "SGMA";! 3.8 is value used by Balistreri and Rutherford (2013)! 
Read ALPHA from file DATA Header "ALFA";! 4.6 is value used by Balistreri and Rutherford (2013)! 
Read  UB_C_PHI_MIN from file DATA Header "UBMN"; 
Formula (initial) NUMREG = sum(c,CNT, 1) ; 
Formula (initial) (All,s,CNT) C_W(s) = 1.0 ; 
Formula (initial) (All,c,COM)(All,s,CNT)(All,d,CNT) C_T(c,s,d) = 1.0 ; 
Formula (initial) (All,c,COM)(All,s,CNT)(All,d,CNT) C_DELTA(c,s,d) = 1.0 ; 
Formula (initial) LB_C_PHI_MIN = 1.1 ; 
  
! Here we calculate the minimum productivity that enables source region s to 
  trade with destination region d. (Explained in section 6, see 6.1) ! 
Formula (initial) 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
  C_PHI_MIN(c,s,d) = LB_C_PHI_MIN 
  + (UB_C_PHI_MIN-LB_C_PHI_MIN)*2*(1.0/NUMREG)* 
  min{ABS($Pos(s,CNT)-$Pos(d,CNT)), NUMREG-ABS[$Pos(s,CNT)-$Pos(d,CNT)]} ; 
  
Formula (initial) (All,c,COM)(All,s,CNT) C_ND(c,s) = 1.0 ; ! Normalization, see section 5 ! 
  
Formula (initial) (All,c,COM)(All,d,CNT) C_QD(c,d) = 1.0 ; ! Normalization, see section 6 ! 
  
!     Starting from values for SIGMA, C_W, C_T, C_DELTA, C_PHI_MIN, C_ND,      ! 
!     ALPHA and C_QD, we compute values for the other parameters and           ! 
!     coefficients in Table 2 in a sequence.  The sequence is recursive in     ! 
!     the sense that the coefficients on the RHS of each formula are known     ! 
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!     from earlier formulas.                               ! 
  
Formula 
! Equation (A.7) ! 
(Initial)  BETA = [ALPHA/(ALPHA - SIGMA + 1)]^(1/(SIGMA-1)); 
! Metlitz (T2.11) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PHIT(c,s,d)= BETA*C_PHI_MIN(c,s,d); 
! Melitz (T2.8) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_N(c,s,d)=  [C_PHI_MIN(c,s,d)^(-ALPHA)]*C_ND(c,s); 
 
! Melitz (T2.1) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PT(c,s,d) = [C_W(s)*C_T(c,s,d)/C_PHIT(c,s,d)]*SIGMA/(SIGMA-1); 
! Melitz (T2.2) ! 
(Initial) (All,c,COM)(All,d,CNT) 
C_P(c,d) = sum(s,CNT, 
      C_N(c,s,d)*(C_DELTA(c,s,d)^SIGMA)*C_PT(c,s,d)^(1-SIGMA) )^(1/(1-SIGMA)); 
! Meltiz (T2.3) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_QT(c,s,d) = C_QD(c,d)*(C_DELTA(c,s,d)^SIGMA)*[C_P(c,d)/C_PT(c,s,d)]^SIGMA ; 
! Melitz (T2.12) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_Q_MIN(c,s,d) = C_QT(c,s,d)/(BETA^SIGMA); 
! Melitz (T2.10) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) C_F(c,s,d) 
= (1/(SIGMA-1))*[C_T(c,s,d)/C_PHI_MIN(c,s,d)]*C_Q_MIN(c,s,d); 
! Melitz (T2.4) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) C_Q(c,s,d) 
= C_QT(c,s,d)*C_N(c,s,d)^[SIGMA/(SIGMA-1)]; 
! Melitz (T2.5) ! 
(Initial) (All,c,COM)(All,s,CNT)(All,d,CNT) C_PIT(c,s,d) = 
(C_PT(c,s,d) - C_W(s)*C_T(c,s,d)/C_PHIT(c,s,d))*C_QT(c,s,d) - C_F(c,s,d)*C_W(s); 
! Melitz (T2.6 and T2.9)! 
(Initial) (All,c,COM)(All,s,CNT) 
  C_H(c,s) = Sum(d,CNT, C_N(c,s,d)*C_PIT(c,s,d))/[C_ND(c,s)*C_W(s)]; 
! Melitz (T2.7) ! 
(Initial) (All,c,COM)(All,s,CNT) 
  C_L(c,s) = Sum(d,CNT, C_N(c,s,d)*C_QT(c,s,d)/C_PHIT(c,s,d)) 
    + Sum(d,CNT, C_N(c,s,d)*C_F(c,s,d)) +C_ND(c,s)*C_H(c,s); 
  
Variable ! These are all percentage changes ! 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
p_tsd(c,s,d) # Price of c charged by the typical c-producing firm on sd-link #; 
        (All,s,CNT) 
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w(s) # Wage rate in region s #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
t(c,s,d) # Power of tariff on c imposed by d on flows from s #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
phi_tsd(c,s,d)# Productivity (marginal output/worker) of a typical c firm on sd-link #; 
        (All,c,COM)(All,d,CNT) 
p_d(c,d) # Price of the c-composite in region d # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
q_tsd(c,s,d) # Quantity sent by the typical c-producing firm on the sd-link #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
n_sd(c,s,d) # Number of firms in region s sending c on the sd-link #; 
        (All,c,COM)(All,d,CNT) 
q_d(c,d) # Quantity of composite c consumed region d # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
q_sd(c,s,d) # The CES aggregate quantity of c sent on the sd-link # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
pi_tsd(c,s,d) # Profits earned on the sd-link by the typical c-firm on sd-link #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
delta(c,s,d); 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
f_sd(c,s,d) # Units of labor required to setup a c-firm for trade on the sd-link #; 
        (All,c,COM)(All,s,CNT) 
nd(c,s); 
        (All,c,COM)(All,s,CNT) 
h(c,s) # Fixed setup cost for a c-firm in region s # ; 
        (All,c,COM)(All,s,CNT) 
l(c,s) # Employment in the c-industry in region s #; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
phi_min(c,s,d); 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
q_min(c,s,d) # Quantity sent by lowest productivity c-firm operating on the sd-link #; 
  
Update 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_T(c,s,d) = t(c,s,d); 
(All,s,CNT) C_W(s) = w(s); 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_DELTA(c,s,d)= delta(c,s,d); 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_PHI_MIN(c,s,d)= phi_min(c,s,d); 
(All,c,COM)(All,s,CNT) C_ND(c,s) = nd(c,s); 
(All,c,COM)(All,d,CNT) C_QD(c,d) = q_d(c,d); 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_F(c,s,d) = f_sd(c,s,d) ; 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_PIT(c,s,d) = pi_tsd(c,s,d) ; 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_N(c,s,d) = n_sd(c,s,d) ; 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_PHIT(c,s,d) = phi_tsd(c,s,d) ; 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_PT(c,s,d) = p_tsd(c,s,d) ; 
(All,c,COM)(All,d,CNT) C_P(c,d) = p_d(c,d) ; 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_Q(c,s,d) = q_sd(c,s,d) ; 
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(All,c,COM)(All,s,CNT)(All,d,CNT) C_QT(c,s,d) = q_tsd(c,s,d) ; 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_Q_MIN(c,s,d) = q_min(c,s,d) ; 
(All,c,COM)(All,s,CNT) C_H(c,s) = h(c,s) ; 
(All,c,COM)(All,s,CNT) C_L(c,s) = l(c,s) ; 
  
! **************************************************************************** ! 
!     Percentage change version of the Melitz sectoral model, in Table 2.      ! 
! **************************************************************************** ! 
  
! We start by evaluating C_R(c,s,d).  This is the region d's share of its 
  expenditure on c that is sourced from region s.  This coefficient appears in 
  the percentage change version of Melitz equation (T2.2). ! 
Coefficient 
        (all,c,COM)(All,s,CNT)(All,d,CNT) 
C_R(c,s,d) # Region d's share of expenditure on c that is sourced from region s #; 
        (All,c,COM)(All,d,CNT) 
C_RBot(c,d); 
Formula (All,c,COM)(All,d,CNT) C_RBot(c,d) 
        = Sum(s,CNT,  C_N(c,s,d)*(C_DELTA(c,s,d)^SIGMA)*(C_PT(c,s,d)^(1-SIGMA)) ); 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_R(c,s,d) 
        = [ C_N(c,s,d)*(C_DELTA(c,s,d)^SIGMA)*(C_PT(c,s,d)^(1-SIGMA)) ]/C_Rbot(c,d); 
  
! Percentage change forms for the Melitz equations from table 2. ! 
  
Equation E_p_tsd # Melitz equation (T2.1) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
p_tsd(c,s,d) = w(s) + t(c,s,d)-phi_tsd(c,s,d); 
  
Equation E_p_d # Melitz equation (T2.2) # 
(All,c,COM)(All,d,CNT) 
p_d(c,d) = (1/(1-SIGMA))* Sum(s, CNT, C_R(c,s,d)*[n_sd(c,s,d)+SIGMA*delta(c,s,d) 
   +(1-SIGMA)*p_tsd(c,s,d) ]); 
  
Equation E_q_tsd # Melitz equation (T2.3) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
q_tsd(c,s,d) = [q_d(c,d) + SIGMA*(p_d(c,d) + delta(c,s,d) - p_tsd(c,s,d))] ; 
  
Equation E_q_sd # Melitz equation (T2.4) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
q_sd(c,s,d) = (SIGMA/(SIGMA - 1))*n_sd(c,s,d) + q_tsd(c,s,d) ; 
  
Equation E_pi_tsd # Melitz equation (T2.5) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PIT(c,s,d)*pi_tsd(c,s,d) = 
  C_PT(c,s,d)*C_QT(c,s,d)*[p_tsd(c,s,d) + q_tsd(c,s,d)] 
  - C_W(s)*C_T(c,s,d)*C_QT(c,s,d)/C_PHIT(c,s,d)*[w(s) + t(c,s,d) + q_tsd(c,s,d) 
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                                                              - phi_tsd(c,s,d) ] 
  - [C_F(c,s,d)*C_W(s)]*(f_sd(c,s,d)+w(s)); 
  
Equation E_nd # Melitz equation (T2.6 and T2.9) # 
(All,c,COM)(All,s,CNT) 
C_ND(c,s)*C_H(c,s)*C_W(s)*[nd(c,s) + h(c,s)+ w(s)] = 
Sum(d,CNT, C_N(c,s,d)*C_PIT(c,s,d)*[n_sd(c,s,d)+pi_tsd(c,s,d) ]); 
  
Equation E_l # Melitz equation (T2.7) # 
(All,c,COM)(All,s,CNT) C_L(c,s)*l(c,s) = sum(d,CNT, 
[C_N(c,s,d)*C_QT(c,s,d)/C_PHIT(c,s,d)] 
*[n_sd(c,s,d)+q_tsd(c,s,d) -phi_tsd(c,s,d)]) 
     + sum(d,CNT, C_N(c,s,d)*C_F(c,s,d)*[n_sd(c,s,d)+f_sd(c,s,d)]) 
     + C_ND(c,s)*C_H(c,s)*[nd(c,s) + h(c,s)]; 
  
Equation E_n_sd # Melitz equation (T2.8) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) n_sd(c,s,d) = nd(c,s) -ALPHA*phi_min(c,s,d); 
  
Equation E_phi_min # Meltiz equation (T2.10) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
 phi_min(c,s,d)+f_sd(c,s,d)  = t(c,s,d) +q_min(c,s,d); 
  
Equation E_phi_tsd # Melitz equation (T2.11) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) phi_tsd(c,s,d) =phi_min(c,s,d); 
  
Equation E_q_min # Meltiz equation (T2.12) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) q_min(c,s,d) = q_tsd(c,s,d); 
  
! **************************************************************************** ! 
! Completing the Melitz general equilibrium model & adding useful definitions  ! 
! **************************************************************************** ! 
  
Coefficient 
        (All,c,COM)(All,s,CNT)(All,d,CNT)  
C_REV(c,s,d) # Tariff revenue on sd-link # ; 
        (All,d,CNT)  
C_LTOT(d) # Aggregate employment in region d # ; 
        (All,d,CNT)  
C_GDP(d) #  Nominal GDP in region d #; 
        (All,c,COM)(All,d,CNT)  
C_MU(c,d) # share of d's expenditure devoted to commodity c # ; 
        (All,d,CNT)  
C_BTS(d) #  Balance of trade surplus calculated as exports (fob) minus imports (cif) #; 
        (All,d,CNT)  
C_BTS_CHK(d) # Balance of trade surplus calculated as GDP minus absorption #; 
        (All,c,COM)  
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C_LS(c) # World-wide employment in the c-industry # ; 
  
 
Formula 
! Equation (4.1) ! 
(initial) (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_REV(c,s,d) = (C_T(c,s,d)-1)*(C_W(s)/C_PHIT(c,s,d))*C_N(c,s,d)*C_QT(c,s,d) ; 
! Equation (4.3) ! 
(initial) (All,d,CNT) C_LTOT(d) = sum(c,COM, C_L(c,d)) ; 
 
! Equation (4.2) ! 
(initial) (All,d,CNT) C_GDP(d) = sum(c,COM, C_W(d)*C_L(c,d)) 
  + sum(c,COM, sum(s,CNT, C_REV(c,s,d))); 
! Equation (4.4) ! 
(initial) (All,c,COM)(All,d,CNT) C_MU(c,d) = C_QD(c,d)*C_P(c,d)/C_GDP(d) ; 
  
! Other useful coefficients ! 
(initial) (All,d,CNT) C_BTS(d) = C_GDP(d) - sum(c,COM, C_P(c,d)*C_QD(c,d)); 
(initial) (All,d,CNT) C_BTS_CHK(d) = 
  sum(c,COM, sum(r,CNT, C_PT(c,d,r)*C_QT(c,d,r)*C_N(c,d,r))) 
  - sum(c,COM, sum(r,CNT, 
               (C_T(c,d,r)-1)*(C_W(d)/C_PHIT(c,d,r))*C_N(c,d,r)*C_QT(c,d,r))) 
  - sum(c,COM, sum(s,CNT, C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d))) 
  + sum(c,COM, sum(s,CNT, 
               (C_T(c,s,d)-1)*(C_W(s)/C_PHIT(c,s,d))*C_N(c,s,d)*C_QT(c,s,d))); 
  
(initial) (All,c,COM)  C_LS(c) = Sum(s,CNT, C_L(c,s)); 
  
Variable 
        (All,d,CNT) 
gdp(d) # GDP for region d  # ; 
        (Change)(All,d,CNT) 
d_bts(d) # Balance of trade #; 
        (Change)(All,d,CNT) 
d_bts_chk(d) # Balance of trade check # ; 
        (All,c,COM) 
ls(c) # worldwide employment in industry c # ; 
 
        (All,d,CNT) 
ltot(d) # Aggregate employment in region d # ; 
        (change)(All,c,COM)(All,s,CNT)(All,d,CNT) 
d_rev(c,s,d) # Tariff revenue on sd-link # ; 
        (All,c,COM)(All,d,CNT) 
mu(c,d) # share of d's expenditure devoted to commodity c # ; 
        (All,c,COM)(All,d,CNT)  
f_mu(c,d) # Matrix shifter on mu # ; 
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        (All,d,CNT)  
ff_mu(d) # Vector shifter on mu # ; 
ave_wage # Average worldwide wage rate #; 
        (All,s,CNT)  
welfare(s) #  Welfare, calculated in Melitz as real consumption #; 
wld_welfare  #  World welfare, calculated in Melitz as real consumption #; 
 
Update 
(change) (All,c,COM)(All,s,CNT)(All,d,CNT) C_REV(c,s,d) = d_rev(c,s,d) ; 
(All,d,CNT) C_LTOT(d) = ltot(d) ; 
(All,d,CNT) C_GDP(d) = gdp(d) ; 
(All,c,COM)(All,d,CNT) C_MU(c,d) = mu(c,d) ; 
(change) (All,d,CNT) C_BTS(d) = d_bts(d) ; 
(change) (All,d,CNT) C_BTS_CHK(d) = d_bts_chk(d) ; 
(All,c,COM) C_LS(c) = ls(c) ; 
  
! Percentage change versions of  equations that complete the Melitz            ! 
! general equilibrium model (section 4.1.1) and other useful macro equations   ! 
  
Equation E_rev # Equation (4.1) # 
(All,c,COM)(All,d,CNT)(All,r,CNT) 
100*d_rev(c,d,r) 
 =  C_T(c,d,r)*(C_W(d)/C_PHIT(c,d,r))*C_N(c,d,r)*C_QT(c,d,r) 
               *[t(c,d,r) +w(d) +n_sd(c,d,r)+q_tsd(c,d,r) -phi_tsd(c,d,r)] 
- (C_W(d)/C_PHIT(c,d,r))*C_N(c,d,r)*C_QT(c,d,r) 
               *[w(d) +n_sd(c,d,r)+q_tsd(c,d,r) -phi_tsd(c,d,r)]  ; 
  
Equation E_gdp # Equation (4.2) # 
(All,d,CNT) C_GDP(d)*gdp(d) = sum{c,COM, C_W(d)*C_L(c,d)*(w(d)+l(c,d))} 
+sum(c,COM, sum(s,CNT,  100*d_rev(c,s,d) )) ; 
  
Equation E_w # Equation (4.3)  # 
(All,s,CNT) C_LTOT(s)*ltot(s) = sum(c,COM, C_L(c,s)*l(c,s) ) ; 
  
Equation E_q_d # Equation (4.4)  # 
(All,c,COM)(All,d,CNT) p_d(c,d) + q_d(c,d) = mu(c,d) + gdp(d) ; 
 
!  Other useful equations for the Melitz model ! 
  
Equation E_bts # Balance of trade surplus: GDP - Absorption # 
(All,d,CNT) 100*d_bts(d) = C_GDP(d)*gdp(d) - 
    sum{c,COM, (C_P(c,d)*C_QD(c,d))*[p_d(c,d) + q_d(c,d)] }; 
  
Equation E_bts_chk # Balance of trade: exports - imports # 
(All,d,CNT) 100*d_bts_chk(d) = sum{c,COM, 
  Sum(r,CNT, C_PT(c,d,r)*C_QT(c,d,r)*C_N(c,d,r) 



Journal of Global Economic Analysis, Volume 1 (2016), No. 1, pp.  1-110. 
 
 

99 
 

                 *[p_tsd(c,d,r)+ q_tsd(c,d,r)+n_sd(c,d,r)] 
 - 100*d_rev(c,d,r)) 
 - Sum(s,CNT, C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d) 
                 *[p_tsd(c,s,d)+ q_tsd(c,s,d)+n_sd(c,s,d)] 
 - 100*d_rev(c,s,d))       }; 
  
Equation E_ls # Worldwide employment in industry c # 
(All,c,COM) C_LS(c)*ls(c) = sum(s,CNT, C_L(c,s)*l(c,s)); 
  
Equation E_ave_wage # average world-wide wage rate# 
 Sum(tt,CNT, C_LTOT(tt))*ave_wage = sum(s,CNT, C_LTOT(s)*w(s)); 
  
Equation E_mu2 # Allows movements in total consumption to GDP ratio in d: useful for Walras' law # 
(All,c,COM)(All,d,CNT) 
mu(c,d) =ff_mu(d) + f_mu(c,d); 
  
Equation E_welfare  #  Welfare, calculated in Melitz as real consumption # 
(All,d,CNT) 
welfare(d) = (1/sum{cc,COM, C_P(cc,d)*C_QD(cc,d)}) 
                                  *sum{c,COM, C_P(c,d)*C_QD(c,d)*q_d(c,d)}; 
  
Equation E_wld_welfare  #  World welfare, calculated in Melitz as real consumption # 
wld_welfare = (1/sum(d,CNT, sum(cc,COM, C_P(cc,d)*C_QD(cc,d)))) 
                                  *sum(dd,CNT, sum{c,COM, C_P(c,dd)*C_QD(c,dd)*q_d(c,dd)}); 
 
Variable ag_ltot # Total employment, world #; 
Variable (All,s,CNT) rel_wage(s)  # Wage in s relative to world average # ; 
  
Equation E_ag_ltot # Total employment, world # 
 Sum(tt,CNT, C_LTOT(tt))*ag_ltot = sum(s,CNT, C_LTOT(s)*ltot(s)); 
  
Equation E_rel_wage # Wage in s relative to world average #  
(All,s,CNT) w(s) = ave_wage +rel_wage(s); 
  
! **************************************************************************** ! 
!     The Armington Auxiliary model                                            ! 
! **************************************************************************** ! 
  
! **************************************************************************** ! 
! Setting parameter values and finding an initial solution for the             ! 
! Armington auxiliary model consistent with initial solution for Melitz        ! 
! **************************************************************************** ! 
Coefficient 
        (Parameter) 
SIGMAA # Substitution elasticity between varieties, for Armington #; 
! connecting the Armington and Melitz models is legitimate only if SIGMA and 
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SIGMAA are the same  !      
        (All,d,CNT)  
C_WA(d) # Wage rate in region d, Armington #; 
 
 
        (All,c,COM)(All,d,CNT)  
C_QDA(c,d) # Demand in d for composite c, Armington #; 
        (All,d,CNT)  
C_LTOTA(d) # Aggregate employment in region d, Armington # ; 
        (All,c,COM)(All,s,CNT)  
C_PHIA(c,s) # Productivity, industry c region s, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_QA(c,s,d) # Quantity of c sent from s to d, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_TA(c,s,d) # Power of tariff on c sent from s to d, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_PA(c,s,d) # Price to consumers in d of c sent from s, Armington model # ; 
        (All,c,COM)(All,d,CNT) 
C_PCA(c,d) # Price of composite c to consumers in d, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_DELTAA(c,s,d) # Regions d's preference coefficient for c from s, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
C_REVA(c,s,d) # Tariff revenue on c sent from s to d, Armington model # ; 
        (All,d,CNT) 
C_GDPA(d) # Income side GDP in region d, Armington model # ; 
        (all,c,COM)(All,s,CNT)(All,d,CNT) 
C_SHA(c,s,d) # Used in % form of T3.2: region d's share of expenditure on c sourced from s # ; 
        (All,c,COM)(All,d,CNT) 
C_SHBotA(c,d) # Used in forming C_SHA #; 
 
Read SIGMAA from file DATA Header "SGAA"; 
  
! Aligns initial solution for Armington with that for Melitz ! 
Formula 
(Initial) (All,d,CNT) C_WA(d) =C_W(d); 
(initial) (All,c,COM)(All,d,CNT) C_QDA(c,d) = C_QD(c,d) ; 
(initial) (All,d,CNT) C_LTOTA(d) = C_LTOT(d) ; 
  
 
 
! Sets Armington values for productivity, tariffs and tastes consistent with Melitz ! 
Formula 
! Equation (4.5) ! 
(Initial)(All,c,COM)(All,s,CNT) 
  C_PHIA(c,s) = sum(d,CNT, C_QT(c,s,d)*C_N(c,s,d))/C_L(c,s) ; 
! Equation (4.6) ! 
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(Initial)(All,c,COM)(All,s,CNT)(All,d,CNT) 
  C_TA(c,s,d) = 1 + [C_REV(c,s,d)]/[C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d) - C_REV(c,s,d)] ; 
 
! Equation (4.7). In section 4 we assume that SIGMAA = SIGMA.  This is essential  
if we are linking the Armington and Melitz models. However we sometimes want to 
delink them as in Tables 8 and 9 and assume different substitution elasticities  
in the two models.  The code below is legitimate even when we want to calculate  
Armington solutions starting from the same database (value flows)  
as Melitz but using a different substitution elasticity ! 
(Initial)(All,c,COM)(All,s,CNT)(All,d,CNT) 
 C_DELTAA(c,s,d) = {[ C_PHIA(c,s) 
     *{[C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d) - C_REV(c,s,d)]/C_W(s)}/C_QD(c,d)]^(1/SIGMAA)} 
     *{[C_W(s)*C_TA(c,s,d)/C_PHIA(c,s)]/[sum{r,CNT, C_PT(c,r,d)*C_QT(c,r,d)*C_N(c,r,d)}/C_QD(c,d)]}; 
   
! Completing the initial solution for the Armington model  ! 
 ! Equation (T3.1) ! 
(Initial)(All,c,COM)(All,s,CNT)(All,d,CNT) 
  C_PA(c,s,d) = C_WA(s)*C_TA(c,s,d)/C_PHIA(c,s) ; 
! Equation (T3.2) ! 
(Initial)(All,c,COM)(All,d,CNT) 
 C_PCA(c,d) = [sum{s,CNT, (C_DELTAA(c,s,d)^SIGMAA)*(C_PA(c,s,d)^(1-SIGMAA))}]^(1/(1-SIGMAA)); 
! Equation (T3.3) ! 
(Initial)(All,c,COM)(All,s,CNT)(All,d,CNT) 
  C_QA(c,s,d) =  C_QDA(c,d)*[C_DELTAA(c,s,d)*C_PCA(c,d)/C_PA(c,s,d)]^SIGMAA; 
! Equation (T3.5) ! 
(Initial)(All,c,COM)(All,s,CNT)(All,d,CNT) 
  C_REVA(c,s,d) = {C_TA(c,s,d)-1}*{C_QA(c,s,d)*C_WA(s)/C_PHIA(c,s)}; 
 
! Equation (T3.6) ! 
(Initial)(All,d,CNT) 
  C_GDPA(d) = C_W(d)*C_LTOT(d) + sum(c,COM, sum(s,CNT, C_REVA(c,s,d))); 
  
! Evaluating C_SHA(c,s,d): region d's share of expenditure on c sourced from s. 
This is used in the % change form of T3.2.  We rely on C_SHA(c,s,d) being 
C_DELTAA(c,s,d)^(SIGMAA)*C_PA(c,s,d)^(1-SIGMAA) divided by the sum over s of these terms ! 
  
Formula (All,c,COM)(All,d,CNT) C_SHBotA(c,d) = C_PCA(c,d)*C_QDA(c,d); 
 
(All,c,COM)(All,s,CNT)(All,d,CNT) C_SHA(c,s,d) 
=  C_PA(c,s,d)*C_QA(c,s,d)/ C_SHBotA(c,d); 
 
Variable 
        (All,d,CNT)  
wa(d) # Wage rate in region d, Armington #; 
        (All,c,COM)(All,d,CNT)  
q_da(c,d) # Demand in d for composite c, Armington #; 
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        (All,c,COM)(All,s,CNT)(All,d,CNT) 
qa(c,s,d)  # Quantity of c sent from s to d, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
pa(c,s,d) # Price to consumers in d of c sent from s, Armington model # ; 
        (All,c,COM)(All,d,CNT) 
pca(c,d) # Price of composite c to consumers in d, Armington model # ; 
        (change)(All,c,COM)(All,s,CNT)(All,d,CNT) 
d_reva(c,s,d) # Tariff revenue on c sent from s to d, Armington model # ; 
        (All,d,CNT) 
gdpa(d) # GDP in region d, Armington model # ; 
        (All,c,COM)(All,s,CNT)  
phia(c,s) # Productivity, industry c region s, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
ta(c,s,d) # Power of tariff on c sent from s to d, Armington model # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
deltaa(c,s,d) # Region d's preference coefficient for c from s, Armington model # ; 
 
        (All,d,CNT)  
ltota(d) # Employment in d, Armington #; 
        (All,c,COM)(All,d,CNT) 
mua(c,d) # Share of d's expenditure devoted to c, Armington # ; 
        (All,c,COM)(All,s,CNT) 
slack_phia(c,s) # Endogenize to set phia independently of Melitz # ; 
        (change)(All,c,COM)(All,s,CNT)(All,d,CNT) 
d_slack_ta(c,s,d) # Endogenize to set ta independently of Melitz # ; 
        (All,c,COM)(All,s,CNT)(All,d,CNT) 
sl_deltaa(c,s,d) # Endogenize to set deltaa independently of Melitz # ; 
        (All,d,CNT) 
f_wa(d) # Exogenize for one country to equalize Armington & Melitz numeraires # ; 
        (All,d,CNT) 
f_ltota(d) # Exogenize to equalize Armington & Melitz aggregate employment # ; 
        (All,c,COM)(All,d,CNT) 
f_mua(c,d) # Exogenize to equalize d's expend. share devoted to c in Armington & Melitz  # ; 
        (All,c,COM)(All,d,CNT) 
f_muan(c,d) # Matrix shifter on mua # ; 
        (All,d,CNT) 
ff_mua(d) # Vector shifter on mua # ; 
  
Update 
(All,d,CNT) C_WA(d)=wa(d); 
(All,c,COM)(All,d,CNT) C_QDA(c,d) = q_da(c,d); 
(All,c,COM)(All,s,CNT)   C_PHIA(c,s)= phia(c,s); 
(All,c,COM)(All,s,CNT)(All,d,CNT)  C_QA(c,s,d) = qa(c,s,d); 
(All,c,COM)(All,s,CNT)(All,d,CNT)   C_TA(c,s,d) =ta(c,s,d); 
(All,c,COM)(All,s,CNT)(All,d,CNT)   C_PA(c,s,d) = pa(c,s,d); 
(All,c,COM)(All,d,CNT) C_PCA(c,d) = pca(c,d); 
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(All,c,COM)(All,s,CNT)(All,d,CNT) C_DELTAA(c,s,d) = deltaa(c,s,d); 
(Change) (All,c,COM)(All,s,CNT)(All,d,CNT)  C_REVA(c,s,d)=d_reva(c,s,d); 
(All,d,CNT)  C_GDPA(d) = gdpa(d); 
(All,s,CNT)  C_LTOTA(s)= ltota(s); 
  
 
! **************************************************************************** ! 
! Equations for transfering results from Melitz to Armington                   ! 
! **************************************************************************** ! 
  
! Determination of movements in Armington productivity, taste and tariff 
  variables consistent with Melitz ! 
  
Equation E_phia # Equation (4.5) # 
(All,c,COM)(All,s,CNT) 
phia(c,s) = [1/sum(dd,CNT, C_QT(c,s,dd)*C_N(c,s,dd))] 
            *sum(d,CNT, C_QT(c,s,d)*C_N(c,s,d)*[q_tsd(c,s,d) + n_sd(c,s,d)]) 
              - l(c,s) +slack_phia(c,s); 
  
Equation E_ta # Equation (4.6) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
C_TA(c,s,d)*ta(c,s,d) = 100/[C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d) - C_REV(c,s,d)]*d_rev(c,s,d) 
-C_REV(c,s,d)/{[C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d) - C_REV(c,s,d)]^2}* 
[C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d)*(p_tsd(c,s,d)+q_tsd(c,s,d) + n_sd(c,s,d))-100*d_rev(c,s,d)] 
   +100*d_slack_ta(c,s,d); 
  
! E_deltaa should be turned off (by making deltaa exogenous and sl_deltaa  
endogenous) if SIGMAA is not equal to SIGMA ! 
Equation E_deltaa # Equation (4.7) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
deltaa(c,s,d) =(1/SIGMA)* (1/{C_PHIA(c,s) 
     *[C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d) - C_REV(c,s,d)]/C_W(s)} )*{[C_PHIA(c,s)*C_PT(c,s,d)*C_QT(c,s,d)*C_N(c,s,d)/C_W(s)]* 
           [phia(c,s)+p_tsd(c,s,d)+q_tsd(c,s,d) + n_sd(c,s,d)- w(s)] 
 -[C_PHIA(c,s)* C_REV(c,s,d)/C_W(s)]* (phia(c,s) -w(s)) 
-100*[C_PHIA(c,s)/C_W(s)]* (d_rev(c,s,d))} 
+(1- 1/SIGMA)*q_d(c,d) 
 
+[ w(s)+ta(c,s,d)-phia(c,s)] 
-[1/Sum(r,CNT,C_PT(c,r,d)*C_QT(c,r,d)*C_N(c,r,d))]*Sum(k,CNT,C_PT(c,k,d)*C_QT(c,k,d)*C_N(c,k,d) 
*[p_tsd(c,k,d)+q_tsd(c,k,d) + n_sd(c,k,d)])   +  sl_deltaa(c,s,d); 
  
! Transfers  aggregate employment and expenditure shares from Melitz to Armington ! 
Equation E_f_ltota 
(All,d,CNT) ltota(d) = ltot(d) +  f_ltota(d); 
  
Equation E_f_mua 
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(All,c,COM)(All,d,CNT) mua(c,d) = mu(c,d) +  f_mua(c,d); 
  
! Armington model from Table 3 in percentage change form ! 
  
Equation E_pa # Equation (T3.1) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
  pa(c,s,d) = wa(s) + ta(c,s,d) - phia(c,s) ; 
  
Equation E_pca # Equation (T3.2) # 
(All,c,COM)(All,d,CNT) 
 pca(c,d) = (1/(1-SIGMAA)) 
     *{sum(s,CNT, C_SHA(c,s,d)*[SIGMAA*deltaa(c,s,d) + (1-SIGMAA)*(pa(c,s,d))])}; 
  
Equation E_qa # Equation (T3.3) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
  qa(c,s,d) = q_da(c,d) + SIGMAA*[deltaa(c,s,d) + pca(c,d) - pa(c,s,d)]; 
  
Equation E_wa # Equation (T3.4) # 
(All,s,CNT) 
  C_LTOTA(s)*ltota(s) = sum(c,COM, sum(d,CNT, 
     [C_QA(c,s,d)/C_PHIA(c,s)]*[qa(c,s,d) - phia(c,s)] )); 
  
Equation E_d_reva # Equation (T3.5) # 
(All,c,COM)(All,s,CNT)(All,d,CNT) 
100*d_reva(c,s,d) = C_TA(c,s,d)*C_QA(c,s,d)*C_WA(s)*(1/C_PHIA(c,s)) 
                      *[ ta(c,s,d)+qa(c,s,d) + wa(s) - phia(c,s) ] 
                    - C_QA(c,s,d)*C_WA(s)/C_PHIA(c,s) 
                      *[ qa(c,s,d) + wa(s) - phia(c,s)]; 
  
Equation E_gdpa # Equation (T3.6) # 
(All,d,CNT) 
 C_GDPA(d)*gdpa(d) = [C_WA(d)*C_LTOTA(d)]*[wa(d) + ltota(d)] 
                    + 100*sum(c,COM, sum(s,CNT, d_reva(c,s,d) )); 
  
Equation E_q_da # Equation (T3.7) # 
(All,c,COM)(All,d,CNT) 
 pca(c,d) + q_da(c,d) = mua(c,d) + gdpa(d) ; 
  
! Other useful equations for the Armington model ! 
 
Equation E_f_wa #  Equation for equalizing Armington & Melitz numeraires# 
(All,d,CNT) wa(d) = w(d) +  f_wa(d); 
  
Equation E_mua2 # Allows movements in total cons, to GDP ratio in d: useful for Walras' law # 
(All,c,COM)(All,d,CNT) 
mua(c,d) = f_muan(c,d) +ff_mua(d); 
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! **************************************************************************** ! 
! Definitions of GDP and and other macro variables in the Armington Model      ! 
! **************************************************************************** ! 
Coefficient 
        (All,r,CNT)  
C_GDPEXPA(r)  # GDP expenditure, Armington #; 
        (All,c,COM)(All,s,CNT)  
C_LA(c,s) # Employment in industry c country s #; 
  
Formula 
(Initial)(All,d,CNT) C_GDPEXPA(d) = SUM{c,COM, C_PCA(c,d)*C_QDA(c,d)} 
    + SUM{c,COM, SUM(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt))} 
      - SUM{c,COM, SUM(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d))} ; 
  
(Initial)(All,c,COM)(All,s,CNT) C_LA(c,s) = Sum(d,CNT, C_QA(c,s,d))/C_PHIA(c,s); 
  
 
WRITE (postsim) C_GDPEXPA to terminal ; 
(postsim) C_GDPA to terminal ; 
  
Variable 
        (All,r,CNT)  
gdprealexpa(r) # GDP real expenditure, Armington #; 
        (All,r,CNT)  
gdprealinca(r) # GDP real income, Armington # ; 
        (All,d,CNT)  
gdpexpa(d) # Nominal GDP expenditure side, Armington #; 
        (All,c,COM)(All,s,CNT)  
la(c,s) # Employment in industry c in country s #; 
        (all,d,CNT)  
exports(d) # quantity of exports #; 
        (all,d,CNT)  
pexports(d) # price of exports fob #; 
        (all,d,CNT)  
imports(d) # quantity of imports #; 
        (all,d,CNT)  
pimports(d) # price of imports cif #; 
ave_wagea # average worldwide wage,Armington #; 
  
Update 
(All,d,CNT) C_GDPEXPA(d) = gdpexpa(d) ; 
(All,c,COM)(All,s,CNT) C_LA(c,s) = la(c,s); 
  
Equation E_gdpexpa # GDP nominal expenditure, Armington # 
(All,d,CNT) C_GDPEXPA(d)*gdpexpa(d) = SUM{c,COM, C_PCA(c,d)*C_QDA(c,d)*[pca(c,d)+q_da(c,d)]} 
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    + SUM{c,COM, SUM(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt)*[pa(c,d,tt) -ta(c,d,tt) +qa(c,d,tt)])} 
      - SUM{c,COM, SUM(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*[pa(c,s,d) -ta(c,s,d) +qa(c,s,d)])} ; 
  
Equation E_gdprealexp   # GDP real expenditure, Armington # 
(All,d,CNT) C_GDPEXPA(d)*gdprealexpa(d) =SUM{c,COM, C_PCA(c,d)*C_QDA(c,d)*q_da(c,d)} 
  
 
    + SUM{c,COM, 
      SUM(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt)*qa(c,d,tt) )} 
  
      - SUM{c,COM, 
           SUM(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*qa(c,s,d))} ; 
  
Equation E_gdprealinc # GDP real income, Armington # 
(All,d,CNT) C_GDPA(d)*gdprealinca(d) = 
C_LTOT(d)*C_WA(d)*[ltota(d)] 
   + SUM(c,COM, SUM(s,CNT, 
     [C_TA(c,s,d)-1]*[C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*qa(c,s,d) )) 
  
   + SIGMAA/(SIGMAA-1)*SUM(c,COM, SUM(s,CNT, 
                  C_PA(c,s,d)*C_QA(c,s,d)*deltaa(c,s,d) )) 
  
   + SUM(c,COM, {SUM(tt,CNT, 
                [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt) )}*phia(c,d)) ; 
  
Equation E_la  # Employment by industry and country # 
(All,c,COM)(All,s,CNT) C_LA(c,s)*la(c,s) 
  = Sum(d,CNT, (C_QA(c,s,d)/C_PHIA(c,s))*(qa(c,s,d) - phia(c,s))); 
  
Equation E_exports # quantity of exports # 
(All,d,CNT) exports(d) = 
   (1/SUM{c,COM, SUM(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt))}) 
   *SUM{c,COM, SUM(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt)*qa(c,d,tt) )} ; 
  
Equation E_pexports # price of exports fob # 
(All,d,CNT) pexports(d) = 
   (1/SUM{c,COM, SUM(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt))}) 
   *SUM{c,COM, SUM(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt)*[w(d)-phia(c,d)] )} ; 
  
 
 
Equation E_imports # quantity of imports # 
(all,d,CNT) imports(d) = 
      (1/SUM{c,COM, SUM(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d))}) 
      *SUM{c,COM, SUM(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*qa(c,s,d))} ; 
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Equation E_pimports # price of imports cif # 
(all,d,CNT) pimports(d) = 
      (1/SUM{c,COM, SUM(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d))}) 
      *SUM{c,COM, SUM(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*[w(s)-phia(c,s)])} ; 
  
Equation E_ave_wagea # average world-wide wage rate, Armington # 
 Sum(tt,CNT, C_LTOTA(tt))*ave_wagea = sum(s,CNT, C_LTOTA(s)*wa(s)); 
  
 
! **************************************************************************** ! 
!            Welfare decomposition                                             ! 
! **************************************************************************** ! 
Coefficient 
        (All,d,CNT)  
WELFAREINDEX(d) # Welfare index #; 
  
Formula 
(initial) (All,d,CNT) WELFAREINDEX(d) = 1.0 ; 
  
Variable 
        (All,d,CNT)  
welfarea(d)  #  Welfare, calculated in Armington model #; 
wld_welfarea #  World welfare, calculated in Armington model #; 
        (All,d,CNT)  
tot(d) #  Gain from terms of trade movement expressed as percent of GDP #; 
        (All,d,CNT)  
slackw(d) # Will be zero if balance of trade is held on zero # ; 
        (change)(All,d,CNT)  
cont_toft(d) # Welfare contribution, terms of trade #; 
 
 
        (change)(All,d,CNT)  
cont_prim(d) # Welfare contribution, primary factors #; 
        (change)(All,d,CNT)  
cont_tcf(d) # Welfare contribution, tax-carrying flows #; 
        (change)(All,d,CNT)  
cont_techmix(d) # Welfare contribution, variety #; 
        (change)(All,d,CNT)  
cont_techprod(d) # Welfare contribution, production technology #; 
        (change)(All,d,CNT)  
cont_total(d) # Total of welfare contributions #; 
  
Update (All,d,CNT) WELFAREINDEX(d) = welfare(d) ; 
  
Equation E_welfarea  #  Welfare, calculated in Armington as real consumption # 
(All,d,CNT) 
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welfarea(d) = (1/sum{cc,COM, C_PCA(cc,d)*C_QDA(cc,d)}) 
                                  *sum{c,COM, C_PCA(c,d)*C_QDA(c,d)*q_da(c,d)}; 
  
Equation E_wld_welfarea  #  World welfare, calculated in Melitz as real consumption # 
wld_welfarea = (1/sum(d,CNT, sum(cc,COM, C_PCA(cc,d)*C_QDA(cc,d)))) 
                   *sum(dd,CNT, sum{c,COM, C_PCA(c,dd)*C_QDA(c,dd)*q_da(c,dd)}); 
  
Equation E_tot #  Gain from terms of trade movement expressed as percent of GDP # 
(all,d,CNT) tot(d) = (1/C_GDPEXPA(d))*{ 
sum{c,COM, 
 sum(tt,CNT:tt NE d, [C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt)*(wa(d)-phia(c,d)))} 
  
   - sum{c,COM, 
      sum(s,CNT:s NE d, [C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*(wa(s)-phia(c,s)))} 
                                      } ; 
  
Equation E_slackw  # Disaggregation of welfare # 
(All,d,CNT) welfarea(d) = (1/sum{cc,COM, C_PCA(cc,d)*C_QD(cc,d)})*C_GDPEXPA(d)*tot(d) 
    +  (1/sum{cc,COM, C_PCA(cc,d)*C_QD(cc,d)}) 
 *{  sum{c,COM, C_W(d)*C_LA(c,d)*la(c,d)} 
    + sum(c,COM, sum(s,CNT,[C_TA(c,s,d)-1]*[C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*qa(c,s,d) )) 
     + SIGMAA/(SIGMAA-1)*sum(c,COM, sum(s,CNT, C_PA(c,s,d)*C_QA(c,s,d)*deltaa(c,s,d) )) 
     + sum(c,COM, {sum(tt,CNT,[C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt) )}*phia(c,d)) 
                                              } + slackw(d) ; 
  
Equation E_cont_toft # Welfare contribution, terms of trade # 
(All,d,CNT) cont_toft(d) = WELFAREINDEX(d)*(1/sum{cc,COM, C_PCA(cc,d)*C_QD(cc,d)}) 
                                                       *C_GDPEXPA(d)*tot(d) ; 
  
Equation E_cont_prim  # Welfare contribution, primary factors # 
(All,d,CNT) cont_prim(d) 
= WELFAREINDEX(d)*(1/sum{cc,COM, C_PCA(cc,d)*C_QD(cc,d)}) 
                                        *{ sum{c,COM, C_W(d)*C_LA(c,d)*la(c,d)}}; 
  
Equation E_cont_tcf  # Welfare contribution, tax-carrying flows # 
(All,d,CNT) cont_tcf(d) 
= WELFAREINDEX(d)*(1/sum{cc,COM, C_PCA(cc,d)*C_QD(cc,d)})*sum(c,COM, sum(s,CNT,[C_TA(c,s,d)-1] 
                           *[C_PA(c,s,d)/C_TA(c,s,d)]*C_QA(c,s,d)*qa(c,s,d) )); 
  
Equation E_cont_techmix # Welfare contribution, variety # 
(All,d,CNT) cont_techmix(d) 
= WELFAREINDEX(d)*(1/sum{cc,COM, C_PCA(cc,d)*C_QD(cc,d)})*SIGMAA/(SIGMAA-1) 
                *sum(c,COM, sum(s,CNT, C_PA(c,s,d)*C_QA(c,s,d)*deltaa(c,s,d) )); 
  
Equation E_cont_techprod  # Welfare contribution, production technology # 
(All,d,CNT) cont_techprod(d) 
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= WELFAREINDEX(d)*(1/sum{cc,COM, C_PCA(cc,d)*C_QD(cc,d)}) 
*sum(c,COM, {sum(tt,CNT,[C_PA(c,d,tt)/C_TA(c,d,tt)]*C_QA(c,d,tt) )}*phia(c,d)); 
  
Equation E_cont_total # Total of welfare contributions # 
(All,d,CNT) cont_total(d) 
= cont_toft(d) + cont_prim(d) + cont_tcf(d) + cont_techmix(d) + cont_techprod(d) ; 
  
!  CONDENSATION suitable for standard linked Melitz-Armington simulations 
We omit high dimension unshocked exogenous variables and substitute out high  
dimension endogenous variables. Movements in these endogenous variables are  
recovered via backsolving.  Omissions and backsolve substitutions are not  
necessary with small models.  ! 
 
Omit f_sd; !  Normally exogenous and unshocked, hence can usually be omitted! 
Omit delta ; ! Normally exogenous and unshocked, hence can usually be omitted! 
Omit sl_deltaa; ! Can't be omitted if Armington and Melitz are disconnected  
because it must be endogenized to turn off E_deltaa   ! 
Omit d_slack_ta ; ! If the Armington auxiliary model is disconnected from  
Melitz then this variable is endogenous (swapped with ta) and can't be omitted! 
  
backsolve phi_min using E_phi_min ;  
backsolve q_min using E_q_min ;  
backsolve qa using E_qa ; 
backsolve pa using E_pa ; 
backsolve d_reva using E_d_reva ; 
backsolve d_rev using E_rev ; 
backsolve deltaa using E_deltaa ; 
backsolve ta using E_ta ;  !  Not applicable if ta exogenous ! 
backsolve n_sd using E_n_sd ; 
backsolve q_tsd using E_q_tsd ; 
backsolve phi_tsd using E_phi_tsd ; 
backsolve pi_tsd using E_pi_tsd ; 
backsolve p_tsd using E_p_tsd ; 
backsolve q_sd using E_q_sd ; 
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Listing 2. Closure file for running Melitz and Armington in linked mode(extract from 
b35b.cmf) 

! Closure for linked Melitz-Armington simulation  
Exogenous  
ltot  
!delta   ***** Omitted  
t 
!f_sd  ****** Omitted 
h 
f_mu 
ff_mu("CNT1")   ! Allows for Walras' law  
ave_wage        ! Melitz numeraire 
! End of Melitz closure  
 
slack_phia 
!d_slack_ta  ****** Omitted 
!sl_deltaa   ****** Omitted 
 
f_muan  
ff_mua("CNT1")  ! Allows for Walras' law in Armington model 
f_wa("CNT1")    ! Equalizes Armington and Melitz numeraires  
f_ltota; !  Transfers Melitz setting for aggregate employment to Armington 
 
Rest endogenous; 
!These swaps are activated if we want to disconnect Melitz and Armington 
!swap slack_phia = phia; 
!swap sl_deltaa = deltaa; 
!swap d_slack_ta = ta; 


