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gtapingams: Multiregional and
Small Open Economy Models
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This paper describes the implementation in the General Algebraic Modeling Lan-
guage (gams) of an economic equilibrium model based on the Global Trade Analysis
Project (gtap) dataset. We call this model and the ancillary programming tools
gtapingams. Relative to previous installments of gtapingams, an innovation in
this model is that it can easily switch between global multiregional (gmr) and small
open economy (soe) closures. We also include the possibility to compare results for
alternative representations of final demand, based on Cobb-Douglas, linear expen-
diture system and constant difference in elasticities demand systems. In this paper
we outline the model structure, document the associated equilibrium conditions and
describe computer programs which calibrate the model to the desired regional and
sectoral aggregation from the gtap 9 dataset. We perform a few calculations which
illustrate how alternative structural assumptions influence the policy conclusions
derived from the model.
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1. Introduction

Analysis of policies affecting markets in multiple countries requires both data
and theory. The Global Trade Analysis Project (gtap) consortium provides data,
and the analysts confronts this data with a theoretical perspective.1 Despite some
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1 The Global Trade Analysis Project (gtap) is a research program initiated in 1992 to pro-
vide the economic research community with a global economic dataset for use in the
quantitative analysis of international economic issues. gtap has led to the establishment
of a global network of researchers who share a common interest of multi-region trade
analysis and related issues, notably climate and energy policy. The gtap project was
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limitations in data coverage and quality, a key practical constraint lies in the in-
formed translation of theoretical insights into quantitative policy evidence. Our
paper is intended to facilitate this process. We provide computational tools to
exploit gtap data in conjunction with general equilibrium theory, and thereby
contribute to the development of computable general equilibrium (cge) analysis.
In a nutshell, cge models rationalize micro-consistent input-output matrix with a
standard Arrow-Debreu general equilibrium representation of the economy,2 and
quantify ex-ante the impact of a policy relative to an observed state of affair.

While cge models represent an increasingly important area of policy research,
quantitative results from such analysis are inherently model-dependent, which
offers a challenge for their role to inform policy-makers. Therefore, expanding the
set of modeling strategies is important both to further the academic state-of-the-
art and to foster confidence in the use of the results for policy-design purposes.
With this in mind, this paper introduces a new version of the gtapingams model,
building on previous contributions by Rutherford (1998) and Rutherford (2005).
As we detail below, this version of the distribution includes both global multi-
regional (gmr) and small open economy (soe) versions of the gtapingams model,
in which the soe model may be single or multi-regional. In addition, users can
now toggle across several representations of final consumer demand, and thus test
robustness of model results in that dimension.

The version of the model we present is based on version 9 of the gtap Data
Base (Aguiar, Narayanan, and McDougall, 2016), which represents global produc-
tion and trade for 140 country/regions, 57 commodities and eight primary fac-
tors, two of which (land and natural resources) are “sluggish” (imperfectly mobile
across sectors). The data characterize intermediate demand and bilateral trade in
three alternative base years (2004, 2007 and 2011), including tax rates on imports
and exports and other indirect taxes. Our implementation gives users the option
to exploit recently developed tools for parallel computation, which can signifi-
cantly increase computational speed and makes it less cumbersome to exploit the
full dimensionality of the dataset. The dataset also provides trade elasticities and
Armington elasticities (Armington, 1969), which determine the international trade

founded by Thomas Hertel, Executive Director of the Center for Global Trade Analysis at
Purdue University (see notably Hertel, 1997). The Center’s staff of economists is respon-
sible for the regular updates of the database (see e.g. Aguiar, Narayanan, and McDougall,
2016). Software development within the gtap project has been assisted greatly by the ef-
forts of Ken Pearson, Mark Horridge and other researchers from Centre of Policy Studies,
Victoria University(see http://www.gtap.org for a list of applications based on the gtap

framework).
2 Input-output matrices provide data on value flows between economic sectors and re-
gions for primary production factors, intermediate goods and final consumption prod-
ucts. In their micro-consistent versions, such as those provided in the gtap data, these
matrices provide a complete representation of the economy, such that no value is lost in
transaction. The ensuing dataset represents value flows in a closed economic system.
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response of the model, as well as income and price elasticities which character-
ize final demand. (See Narayanan (2015) for a comprehensive description of key
features of the gtap 9 Data Base.)

By design, the gtap Data Base is well suited for the formulation of quantitative
economic models, which in turn can be used to simulate the effect of policies. The
principal programming language for gtap data and modeling work is the Gen-
eral Equilibrium Modelling PACKage (gempack), details of which can be found
at www.copsmodels.com or Harrison and Pearson (1996, 2007)). In the gempack

framework the model is solved as a system of nonlinear equations. The present
paper describes a version of the gtap model which has been implemented in gams.
The gams model is essentially implemented as a nonlinear system of equations,
although it can be posed either as a (primal) constrained non-linear optimization
problem or a mixed complementarity problem (mcp).3 One potentially important
difference between the gempack framework and previous gtapingams releases is
the representation of final demand:4 gempack employs a constant difference of
elasticities (CDE) demand system (Hanoch, 1975), which allows introducing ev-
idence about own-price and income elasticities, while gtapingams models uses
Cobb-Douglas preferences to represent final demand. The present distribution in-
cludes an implementation of the cde demand system together with a least squares
calibration code for the cde which works with the full gtap dataset and many
aggregations. In addition to the original Cobb-Douglas representation, we also
provide the option to use a linear expenditure system (les) representation, with
code to parametrize the function to match own-price and income elasticity data
provided in the gtap dataset.

Therefore, the first and principal contribution of this paper is to document pro-
grams included in the gtapingams version 9 package. These programs permit
analyst to: (i) select an appropriate level of sectoral and regional aggregation from
the gtap 9 dataset and hence target a representation that is relevant to the analysis
of interest; (ii) systematically filter out small and economically insignificant activ-
ity accounts, which significantly improves robustness and efficiency of numeri-
cally solution; and (iii) re-balance the filtered dataset to ensure that it represents a
micro-consistent system and remains consistent with estimates of own-price and
income elasticities of demand. The paper also provides details about core cge

models, which are calibrated to the full gtap datasets for 2004, 2007 and 2011

3 The canonical gtapingams model is essentially a nonlinear system of equations, as the
model does not include activity analysis nor does it rely on free disposal. Formulation
as an mcp imposes some modeling discipline, as equations must be explicitly linked with
variables. Extensions of the model to incorporate, e.g., tariff quotas (Hertel, Grant, and
Rutherford, 2009) or quantitative restrictions on carbon emissions which may or may not
be binding (Böhringer, Carbone, and Rutherford, 2016).
4 See Rutherford (2005) for a discussion of the key differences between the two modeling
frameworks.
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benchmark years.
A second contribution is to introduce a new soe version of the model, and to

propose an approach to calibrate trade elasticity parameters in the soe model to
match the trade response of the gmr model. This makes it possible to produce
consistent comparisons across trade closures. The soe formulation necessitates a
modest generalization of the standard gtap model in which goods produced for
domestic and export markets are perfect substitutes. Following a large literature
based on Devarajan, Lewis, and Robinson (1990), our soe model differentiates
goods produced for domestic and export markets, applying a constant-elasticity-
of-transformation (CET) revenue function. The soe model can be used indepen-
dently of the gmr model for analysis of trade issues in a one or more countries
with fixed terms of trade relative to the rest of the world. It may also be used
in combination with the multiregional model to decompose the contribution of
changes in terms of trade to economic outcomes, as in Böhringer and Rutherford
(2002).

The models developed here offer a very rich framework to evaluate the inter-
national impacts of policies. In the present paper, however, we limit ourselves to
a simple illustration of how the gmr and soe models can be used to better under-
stand the role of terms of trade in policy experiments. More specifically, in these
simulations we assess the economic impact of unilateral, proportional adjustment of
regional import tariffs and export taxes in the US and China. In the gtap 9 Data
Base, average trade taxes are a little less than 2% in the US, and over 4% in China.
Our results suggest that the optimal rate depends crucially on whether one works
with a multiregional or open economy closure, whereas the representation of final
demand only has a minor impact on the quantitative results.

The remaining of this paper is structured as follows. Section 2 introduces the
core gtapingams model. Section 3 presents the equilibrium conditions associated
with the dual (cost minimization) version of the model, which form the basis for
the gams software. Section 4 introduces the computer code for the model. It
further discusses issues about data aggregation, filtering, and re-balancing, and
how gmr and soe models can be calibrated to obtain empirically consistent trade
responses. Section 5 reports some forensic calculations of our illustrative policy
example. Concluding comments are provided in Section 6. All the gams program
files discussed here together with the LATEX source for the paper are provided in
the supplementary files published with this paper.

2. Data, Technology and Preferences

This section introduces the structure of core gmr and soe models included in
the gtapingams distribution. Both models are static, and track the production and
distribution of goods in the global economy. In the gtap 9 Data Base the world
is divided into 140 regions (typically representing individual countries) and 57

commodities (or goods), but computational constraints tend to limit the number
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of regions and goods which can be included in a single model. Datasets are
easily aggregated which can be useful for both empirical applications focusing on
a subset of regions and for debugging steps at the model formulation stage.

In each region, final demand structure is composed of public and private ex-
penditure across goods. Decisions about the allocation of resources are decen-
tralized, and the representation of behavior by consumers and firms in the model
follows the canonical microeconomic optimization framework: (i) consumers max-
imize welfare subject to a budget constraint with fixed levels of investment and
public expenditure; (ii) producers combine intermediate inputs, and primary fac-
tors (several categories of labor, land, resources and physical capital) at least cost
for given technology.5

While gmr and soe models are based on the same data and employ the same
representation of production technology and consumer preferences, they of course
differ in their representation of trade. The gmr model is based on a standard Arm-
ington representation of bilateral trade flows. An implication is that production
and consumption decisions in a given country (or group of countries) will affect
world prices, and the magnitude of this effect will mainly depend on the elasticity
estimates (a measure of country-level market-power). By contrast, the soe model
considers the case in which production and consumption decision in a region
country (or group of country) do not affect world prices. This is modeled by treat-
ing supply and demand by the “rest of the world” (row, i.e. countries that are not
considered relevant for the soe analysis) as perfectly elastic. Corner solutions are
avoided through the assumption that output destined for the domestic and export
markets are differentiated products (see De Melo and Robinson, 1989).6 Therefore,
from the perspective of a given region, the impact of policy evaluated in gmr and
soe models will differ through their impact on the terms of trade.

In the following, we start by describing the basic notation, and then present
the structure of the data together with benchmark accounting identities. We then
present a “primal” description of agents’ optimization problems (i.e. specified in
terms of quantity variables), which leads to the equilibrium conditions presented
in the subsequent section.

5 Details about gtap sectors and primary factors are provided in Appendix A. Readers
of this paper who are interested in using gtapingams as a research tool are encouraged
to download the supplementary materials for this paper and refer to Appendix B for
installation instructions. The computer programs described have been tested using data
files from the gtap 9 Flexagg package, flexagg9aY04.zip, flexagg9aY07.zip and
flexagg9aY11.zip. A license for these data files must be purchased separately by the
users. In addition, a licensed installation of gams (version 24.7.3 or higher) is required.
6 In the present implementation, international closure between the region of interest and
the row is achieved by fixing the value of the current account at its benchmark level, and
permitting the real exchange rate to clear the market. Other assumptions are of course
possible and are left for future research.
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Table 1. Definitions of set indices.

Set Definition

i, j Sectors, an aggregation of the 57 sectors in the gtap 9 Data Base
g Production sectors i, plus private consumption "C", public de-

mand "G" and investment "I"
r, s Regions, an aggregation of the 140 regions in the gtap 9 Data

Base
f Factors of production (consisting of mobile factors, f ∈ m f , skilled

labor (i. officials, mangers and legislators (ISCO-88 Major Groups
1-2), ii. technicians and associated professionals, iii. clerks, and
iv. service and market sales workers), unskilled labor, capital,
and sector-specific, f ∈ s f , agricultural land and other resources)

2.1 Notation

The notation used in the model is summarized in the Tables 1 - 3. Table 1

defines the various dimensions which characterize an instance of the model, in-
cluding the set of sectors/commodities (i, j), the set of regions (r, s), the set of
factors of production ( f ). Set g combines the production sectors i and private and
public consumption demand (indices "C" and "G") and investment demand (in-
dex "I"). It allows for a much tighter formulation of the model as they can all be
conceived of “goods” produced in similar fashion. To simplify the exposition of
the model, however, we describe private consumption, public consumption and
investment demand as stand alone components.

Table 2 defines the primal variables (activity levels) which characterize an equi-
librium. The model determines values of all the variables except international
capital flows, a parameter which would be determined endogenously in an in-
tertemporal model. Table 2 also displays the concordance between the variables
and their gams equivalents.

Table 3 defines the relative price variables for goods and factors in the model.
As is the case in any Shoven-Whalley cge model, the equilibrium conditions de-
termine relative rather than nominal prices.

While the core gtapingams model is base on Cobb-Douglas final demand, the
canonical models incorporate logic for two additional demand systems: the les

and the cde demand system. In particular, the les representation distinguishes
between subsistence demand and discretionary demand, and we define the ad-
ditional variables in Table 4. Similarly, we define an Armington composite price
index for products entering cde final demand. (Details of these demand systems
are provided in Appendices D and C.)

Finally, Table 5 reports the definition of tax and subsidy rates applied in the
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Table 2. Definitions of activity levels (quantity variables).

Variable Definition GAMS variable Benchmark (gtap) value

Yir Production Y(i,r) vom(i,r)

Cr Discretionary consumption Y("c",r) vom("c",r)

Gr Aggregate public Y("g",r) vom("g",r)

Ir Aggregate investment Y("i",r) vom("i",r)

Mir Aggregate imports M(i,r) vim(i,r)

Xir Trade flows with rest of world regions X(i,r) vem(i,r)

FT f r Factor transformation FT(f,r) evom(f,r)

YTj International transport services YT(j) vtw(j)

model, both in terms of the notation employed to describe the model and that
used in the gams code. Note that revenues from taxes and subsidy expenditures
do not appear as explicit variables in the gtap Data Base and are defined on the
basis of expenditures and tax rates. We come back to this below.

2.2 Benchmark data structure and accounting identities

The economic structure underlying the gtap dataset and model is illustrated
in Figure 1. Symbols in this flow chart correspond to variables in the economic
model (see Table 2): Yir is the production of good i in region r, Cr, Ir and Gr portray
private consumption, investment and public demand, respectively, Mir portrays
the import of good i into region r, RAr stand for representative consumers, and
FTs f r is the activity through which the set of sector-specific factors of production
(s f ) are allocated to individual sectors. Further, solid lines represent commodity
and factor market flows, while dotted lines indicate tax revenues and transfers.

Domestic and imported goods markets are represented by horizontal lines
at the top of the figure. Domestic production (vomir) is distributed to exports
(vxmdirs), international transportation services (vstir), intermediate demand (vdfmijr),
household consumption (vdfmiCr), investment (vdfmiIr), and government consump-
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Table 3. Definitions of price variables.

Variable Definition GAMS variable

pC
r Final demand price index for the Cobb-Douglas

demand system
P("C",r)

pG
r Public provision price index P("G",r)

pI
r Investment price index P("I",r)

pY
ir Supply price, gross of indirect producer taxes

(when ηDX
i < ∞, the supply price is replaced by

and export price, pX
ir and domestic supply price,

pD
ir )

P(i,r)

pM
ir Import price, gross of export taxes and tariffs. PM(i,r)

pE
ir Export price from endogenous or exogenous re-

gions.
PE(i,r)

pT
j Marginal cost of transport services PT(j)

pF
f ,r Price of mobile primary factors (m f include labor,

land and resources)
PF(f,r)

pS
s f ,ir Price of sector-specific primary factors PS(sf,i,j)

tion (vdfmiGr).
7 The accounting identity in the gtap 9 dataset is thus:

vomir = ∑
s

vxmdirs + vstir + ∑
j

vdfmijr + vdfmiCr + vdfmiIr + vdfmiGr ,

where j indexes all goods. Similarly, imported goods (with aggregate value vimir)
enter intermediate demand (vifmijr), private consumption (vifmiCr + vifmiSDr) and
public consumption (vifmiGr). The accounting identity for these flows is thus:

vimir = ∑
j

vifmijr + vifmiCr + vifmiSDr + vifmiGr .

7 Recall that in the gams implementation of the model the index "g" includes all sectors
represented in the model plus private consumption "C", public demand "G" and invest-
ment "I". (See Table 1.) For the LES demand representation, it also includes price indices
for discretionary demand "dd" and subsistence demand "sd".
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Table 4. Additional variables for les and cde demand systems.

Variable Definition GAMS variable

SDr Subsistence demand Y("sd",r)

DDr Discretionary demand Y("dd",r)

pDD
r Discretionary demand price index P("dd",r)

pSD
r Subsistence demand price index P("sd",r)

pA
iCr Armington composite price representing the

market price of goods entering cde demand.
PA(i,r)

Inputs to production of good i (Yir) include intermediate inputs (domestic
vdfmijr and imported vifmijr), mobile factors of production (vfmm f ,ir, where m f

is a subset of the set f designating all factors of production), and sector-specific
factors of production (vfms f ,ir, s f ⊂ f ). Factor market equilibrium is given by an
identity relating the value of factor payments to factor income:

∑
i

vfm f ir = evom f r ,

and factor earnings accrue to households.
International market clearance conditions require that region r exports of good

i (vxmdir at the top of the figure) equal the imports of the same good from the same
region summed across all trading partners (vxmdisr at the bottom of the figure):

vxmir = ∑
s

vxmdirs ,

where s, an alias for r, indexes regions. Likewise, market clearance conditions
apply for international transportation services. The supply-demand balance in
the market for transportation service j requires that the sum across all regions of
service exports (vstir, at the top of the figure) equals the sum across all bilateral
trade flows of service inputs (vtwrjisr at the bottom of the figure):

∑
r

vstjr = ∑
isr

vtwrjisr

Turning to tax revenues and transfers, shown as dotted lines in figure 1, flows
labeled with R correspond to tax revenues. For each country, tax flows consist of
indirect taxes on production/exports of each good (RY

ir), on consumption (RC
r ), on

public demand (RG
r ) and on imports (RM

ir ). The regional budget constraint thus
relates tax payments (RY

ir,RC
r ,RG

r ,RM
ir ), factor income (evom f r), and the current

10
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Table 5. Tax and subsidy rates (net basis unless noted).

Parameter Definition gams Parameter

to
ir Output taxes (gross basis) rto(i,r)

t f
f ir Factor taxes rtf(f,i,r)

t f d
ijr Intermediate input taxes Domestic rtfd(i,j,r)

t f i
ijr Imported rtfi(i,j,r)

tpd
ir Consumption taxes Domestic rtfd(i,"C",r)

tpi
ir Imported rtfi(i,"C",r)

tgd
ir Public demand taxes Domestic rtfd(i,"G",r)

tgi
ir Imported rtfi(i,"G",r)

tgd
ir Investment demand taxes Domestic rtfd(i,"I",r)

tgi
ir Imported rtfi(i,"I",r)

txs
isr Export subsidies rtxs(i,s,r)

tms
isr Import tariffs rtms(i,s,r)

account deficit (i.e., net transfers from abroad, vbr) to total private consumption
expenditure vomCr, total public consumption expenditure vomGr, and total invest-
ment vomIr, yielding:

vomCr + vomGr + vomIr = ∑
f

evom f r + ∑
i
RY

ir +RC
r +RG

r + ∑
i
RM

ir + vbr .

To this point we have outlined two types of consistency conditions which are
part of any gtap Data Base: market clearance (supply = demand for all goods
and factors), and income balance (net income = net expenditure). A third set of
identities involve net operating profits by all sectors in the economy. In the core
gtap model “production” takes place under conditions of perfect competition with
constant returns to scale, hence there are no excess profits, and the cost of inputs
must equal the value of outputs. This condition applies for each production sector:

Yir: ∑ f vfm f ir + ∑j

(
vdfmijr + vifmijr

)
+RY

ir = vomir ,

Cr: ∑i (vdfmiCr + vifmiCr) +RC
ir = vomCr ,

Ir: ∑i vdfmiIr = vomIr

11
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Gr: ∑i (vdfmiGr + vifmiGr) +RG
ir = vomGr ,

Mir: ∑s

(
vxmdisr + ∑j vtwrjisr

)
+RM

ir = vimir

FTf r: evom f r = ∑i vfm f ir

2.3 Decentralized optimization problems

The benchmark identities presented in the previous section indicate the mar-
ket clearance, zero profit and income balance conditions which define the gtap

model. The displayed equations do not, however, characterize the behavior of
agents in the model. In a competitive equilibrium setting, the standard assump-
tion of optimizing atomistic agents applies for both producers and consumers.
This section lays out the optimization problem of each component in the model,
and thereby provides the structure of production technology (production func-
tions) and preferences (characterizing final demand), as well as the representation
of trade. We also highlight where conceptual differences between gmr and soe

models intervene.
Note that in order to simplify notation, we denote decision variables corre-

sponding to the benchmark data structures with the initial “v” replaced by “d.”
Hence, while vd f mjir represents benchmark data on intermediate demand for
good j in the production of good i in region r, dd f mjir represents the correspond-
ing decision variable in the equilibrium model. This approach to the scaling of
variables is consistent with the gams code, and it provides a flexible and transpar-
ent approach with respect to the calibration of activity variables.

2.3.1 Production technology

Starting with producers, profit maximization in the constant returns to scale
setting is equivalent to cost minimization subject to technical constraints. For
sector Yir we characterize input choices as though they arose from minimization
of unit costs:

min
ddfm,dfm,difm

cD
ir + cM

ir + cF
ir (1)

s.t. cD
ir = ∑

j
pY

jr(1 + t f d
jir)ddfmjir

cM
ir = ∑

j
pM

jr (1 + t f i
jir)difmjir

cF
ir = ∑

f
(pF

f r| f∈m f + pS
f ir| f∈s f )(1 + t f

f ir)dfm f ir

Fir(ddfm,difm,dfm) = Yir

where F(·) represents the production function, which is described by a nested
constant-elasticity-of-substitution (CES) form, with structure displayed in Figure
2.

12
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p̃Y
ijr = pY

ir(1 + t f d
ijr)

p̃M
ijr = pM

ir (1 + t f i
ijr) p̃F

m f ,jr = pF
m f ,r(1 + t f

m f ,jr)

p̃S
s f ,jr = pS

s f ,jr(1 + t f
s f ,jr)

. . .

p̃Y
ir = pY

ir(1− to
jr)

p̃Y
i=1 p̃M

i=1 p̃Y
i=n p̃M

i=n

p̃F
m f ,r, p̃S

s f ,ir

σ = 0

σ = 0

σD
i=1 σD

i=n σ = esubvai

Figure 2. CES nesting structure for production function Yir = Fir(ddfm,difm,dfm).

In the figure, σ values in different nests represent substitution elasticities be-
tween inputs, with σD

i = esubdi measuring substitution possibility between in-
termediate inputs produced domestically and imported from abroad which are
similarly a composite of imports from varieties from different regions. esubvai rep-
resents the elasticity of substitution between primary inputs in the value added
nest. (Both of these parameters are provided in the gtap 9 Data Base (see Hertel
and van der Mensbrugghe, 2016).) Note further that the specific source of tax rev-
enue is indicated in this figure, consisting of output taxes, taxes on intermediate
inputs and taxes on factor demands, all of which are applied on an ad-valorem
basis.

One important difference between gmr and soe models occurs in the differ-
entiation of output for domestic and export markets. In particular, the supply of
goods to domestic and export markets are portrayed as arising from the following
profit-maximization problem:

max
dxm,ddm

pD
ir ddmir + pX

ir dxmir (2)

s.t. Gir(ddmir, dxmir) = Yir (3)

where G is the cet function with structure illustrated in Figure 3. In the gmr

model, transformation elasticities ηDX
ir = etrndxi are set to infinity, which is the

default value in the gtap 9 Data Base. This implies that the supply price of output
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η = etrndxi

pX
ir pD

ir

pY
ir

Figure 3. CET transformation between domestic and export markets Yir = Gir(dxm, ddm).

pY
jr is the same if output is used locally or in a different region. By contrast, in the

soe model we have that etrndxi < ∞, which implies that output price may differ
when supplied domestically or abroad. In this case, pY

jr in equation (1) is replaced
by pD

jr . We come back to the choice of etrndxi in the soe model when we present
our illustrative calculations.

2.3.2 Preferences and final demand

Private consumption consistent with utility maximization is portrayed by min-
imization of the cost of a given level of aggregate consumption:

min
ddfmiCr ,difmiCr

∑
i

pY
ir(1 + tpd

ir )ddfmiCr + pM
ir (1 + tpi

ir )difmiCr (4)

s.t. Hr(ddfmiCr, difmiCr) = Cir

where Hr represents final demand from the representative consumer.
Final demand in the core model is characterized by Cobb-Douglas preferences.

Alternative specifications included in the model logic include both the les and
cde expenditure.8 The nested discretionary and subsistence demand functions
are is displayed in Figure 4.

2.3.3 Government and public consumption

Public consumption in the model is represented as a fixed coefficient (Leontief)
aggregation of domestic-import composites. This formulation introduces substi-
tution at the second level between domestic and imported inputs while holding
sectoral commodity aggregates constant. Figure 5 illustrates the functional form.

2.3.4 International trade

The choice among imports from different trading partners is based on Arming-
ton’s idea of regionally differentiated products. The following cost minimization

8 The les model involves subsistence and discretionary expenditure, which are repre-
sented through composite price indices representing ces aggregates of both domestic and
imported inputs, P("DD",r) and P("SD",r), respectively. The cde model requires the
introduction of trade aggregation activities (A(i,r)) and associated Armington compos-
ite price indices, PA(i,r).
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Figure 4. LES nesting for discretionary and subsistence consumption.

. . .

σ = 0
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ir = pM
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Figure 5. Nesting structure for public consumption Gr = Gr(ddfmiGr, difmiGr).

problem formalizes this choice:

min
dxmd,dtwr

∑
s
(1 + tms

isr )

(
pY

is(1− txs
isr)dxmdisr + ∑

j
pT

j dtwrjisr

)
(5)

s.t. Air(dxmd,dtwr) = Mir

where A is the import aggregation function, described by the nested ces-Leontief
function shown in Figure 6. In the case of the soe model, in which etrndxi < ∞,
pY

is in (5) is replaced by pX
is .

Note that transportation services enter on a proportional basis with imports
from different countries, reflecting differences in unit transportation margins across
different goods and trading partners. Therefore, substitution at the top level in an
Armington composite involves trading off of both imported goods and associated
transportation services. Trade flows are subject to export subsidies and import
tariffs, with subsidies paid by government in the exporting region, and tariffs
collected by government in the importing region.

The provision of international transportation services is modeled through an
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p̃Y
is = pY

is(1− txs
isr)(1 + tms

isr )

p̃T
js = pT
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Figure 6. Armington aggregation of traded goods Mir = Air(dxmd,dtwr).

. . .
σ = 1

pY
j,1 pY

j,n

pT
j

Figure 7. International transportation services aggregator YTj = Tj(dst).

aggregation of transportation services exported from countries throughout the
world. More specifically, we consider the following cost minimization problem
for the aggregation of transportation services:

min
dst

∑
r

pY
irdstir s.t. Ti(dst) = YTi

where the aggregation function Ti combines transport service exports from multi-
ple regions. The functional form which aggregates services from different regions
is illustrated in Figure 7.

2.3.5 Supply of sector-specific factors

Land and natural resources are portrayed as sector-specific factors of produc-
tion. These are supplied through constant-elasticity-of-transformation (CET) pro-
duction function which allocates composite factors to sectoral markets. Formally,
the supply of sectoral factors of production is modeled through the following
profit-maximization problem:

max
dfm

∑
j

dfms f ,jr pS
s f ,jr (6)

s.t. Γs f ,r(dfm) = evoms f ,r (7)
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. . .

η = etraes f

pS
s f ,1r pS

s f ,nr

pF
s f ,r

Figure 8. Sector-specific factor cet transformation function FTs f = Γs f (dfm).

where Γ is the cet function with structure illustrated in Figure 8. Note that in the
figure η represents transformation elasticities provided in the gtap 9 Data Base.

3. Equilibrium Conditions

An Arrow-Debreu model concerns itself with the interactions of decentralized
decisions by consumers and producers in markets. Mathiesen (1985) proposed
a representation of this class of models in which two types of equations define
an equilibrium: zero profit and market clearance. The corresponding variables
defining an equilibrium are activity levels (for constant-returns-to-scale firms) and
commodity prices.9 Here we extend Mathiesen’s framework with a third class of
variables corresponding to consumer income levels. Commodity markets encom-
pass primary endowments of households with producer outputs. In equilibrium
the aggregate supply of each good must be at least as great as total intermediate
and final demand. Initial endowments are exogenous. Producer supplies and de-
mands are defined by producer activity levels and relative prices. Final demands
are determined by market prices.

Economists who have worked with conventional textbook equilibrium models
can find Mathiesen’s framework to be somewhat opaque because many quantity
variables need not be explicitly specified in the model. Variables such as final
demand by consumers, factor demands by producers and commodity supplies
by producers, are defined implicitly in Mathiesen’s model. For example, given
equilibrium prices for primary factors, consumer incomes can be computed, and
given income and goods prices, consumers’ demands can then be determined.
The consumer demand functions are written down in order to define an equilib-
rium, but quantities demanded need not appear in the model as separate vari-
ables. The same is true of inputs or outputs from the production process: relative
prices determine conditional demand, and conditional demand times the activity
level represents market demand. Omitting decisions variables and suppressing

9 Under a maintained assumption of perfect competition, Mathiesen (1985) may char-
acterize technology as constant-returns-to-scale without loss of generality. Specifically,
decreasing returns are accommodated through introduction of a specific factor, while in-
creasing returns are inconsistent with the assumption of perfect competition. Note that
in this environment zero excess profit is consistent with free entry for atomistic firms
producing an identical product.
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definitional equations corresponding to intermediate and final demand provides
significant computational advantages at the cost of a somewhat more complicated
model statement.

In the following, we detail (i) zero profit conditions, (ii) market clearance condi-
tions, and (iii) income balance conditions, which in the present case is equivalent
to the regional budget constraint. These three sets of conditions form the ba-
sic system of equation to be solved. Note that the actual code for the model is
implemented both in the algebraic mixed complementarity format (gams/mcp,
see Rutherford, 1995) and through the more compact formulation afforded by
the Mathematical Programming System for General Equilibruim (mpsge) syntax
(Rutherford, 1999).

3.1 Zero profit (arbitrage) conditions

All production activities in the model are represented by constant-returns-to-
scale technologies, and markets are assumed to operate competitively with free
entry and exit. As a consequence, equilibrium profits are driven to zero and the
price of output reflects the cost of inputs. The following sets of equations relating
output price to marginal cost are part of the definition of an equilibrium.10

The calculation of unit cost and unit revenue functions involves the definition
of a number of ancillary variables (that do not appear in the gams code as explicit
choice variables). In the following we define ancillary variables in un-numbered
equations, indicating that these variables are “optional” in the sense that they may
be substituted out of the non-linear system of equations. Moreover, we use the
symbol θ to portray value shares from the base year data. In most cases subscripts
on these value shares are omitted in order to economize on notation. Finally, to
denote benchmark values we use an overline, so that tpd

ir represents the benchmark
value of tpd

ir .

3.1.1 Sectoral production (Y(j,r))

Sectoral production combines intermediate inputs with a value-added nest
combining primary inputs (see Figure 2). The unit cost of value-added is a ces

composite of skilled and unskilled labor, land, resources and capital inputs to
production, gross of taxes. Factor inputs may be sector-specific or mobile across
sectors:

pp f
f jr =


pF

f r
(1+t f

f jr)

1+t f
f jr

f ∈ m f

pS
f jr

(1+t f
f jr)

1+t f
f jr

f ∈ s f

10 To retain consistency with the mcp format, we express zero profit conditions as “ori-
ented equations,” with marginal (=average) cost on the lhs and marginal (=average) rev-
enue on the rhs.
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and the unit cost function is given by:

c f
jr =

(
∑

f
θ f

(
pp f

f jr

)1−σ
)1/(1−σ)

,

in which θ f represents the factor share of value added [theta vfm(f,g,r)].
The user cost of intermediate inputs differs from the market price due to the

presence of taxes on intermediate inputs:

pd
ijr = pY

ir

1 + t f d
ijr

1 + t f d
ijr

pi
ijr = pM

ir

1 + t f i
ijr

1 + t f i
ijr

A ces cost function describes the minimum cost of a bundle of domestic and
imported inputs to production, based on benchmark value shares and an elasticity
of substitution σ[esubd(i)]:

ci
ijr =

(
θ(pd

ijr)
1−σ + (1− θ)(pi

ijr)
1−σ
)1/(1−σ)

,

in which θ represents the domestic share of the Armington composite
[theta vdfm(i,j,r)].

Unit cost of sectoral output is then a Leontief (linear) composite of the costs of
intermediate and value-added composite inputs, based on base-year value shares:

cY
jr = ∑

i
θici

ijr + θ f c f
jr,

in which θi represents the cost share of intermediate input i [theta cm0(i,j,r)];
and θ f represents the cost share of value added in sectoral output [theta cf0(j,r)].

Having formulated the unit cost function, it is possible to compactly portray
the zero profit condition for yjr. In equilibrium, the marginal cost of supply equals
the market price, net of taxes:

cY
jr = pY

jr

1− to
jr

1− to
jr

(8)

In the soe model production for domestic and export markets are differentiated,
and we replace pY

jr by a unit revenue function,

rY
jr =

(
θ(pD

jr )
1+η + (1− θ)(pX

jr)
1+η
)1/(1+η)

,

in which θ represents the export share of output [theta vxm(j,r)].
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3.1.2 Consumer demand (Y("c",r))

In previous versions of gtapingams the consumer price index represented a
Cobb-Douglas demand system with an Armington substitution between domestic
and imported goods prices gross of tax. This model is retained as one option in
the new model, price indices for domestic and imported goods are given by:

pdc
ir = pY

ir
1 + tpd

ir

1 + tpd
ir

,

and

pic
ir = pM

ir
1 + tpi

ir

1 + tpi
ir

,

and the Armington composite price of good i is a ces composite price defined
over these indices:

pc
ir =

(
θ(pdc

ir )
1−σ + (1− θ)(pic

ir)
1−σ
)1/(1−σ)

,

in which θ represents the domestic demand share [theta vdfm(i,"c",r)].
In addition to the Cobb-Douglas representation of the final demand system,

our core model includes a les, which combines a Cobb-Douglas discretionary
demand with a Leontief subsistence demand activity. The added complexity of the
les specification permits the model to be calibrated both to the income and average
price elasticities of demand. (See Appendix C for details.) The price indices for
discretionary and subsistence demand are defined by:

pDD
r = ∏

i
(pc

ir)
θi , (9)

in which θi represents the discretionary value share [theta cm0(i,"dd",r)].
The price index for subsistence demand is defined by a Leontief cost function:

pSD
r = ∑

i
θi pc

ir, (10)

in which θi represents the commodity i share of subsistence demand
[theta cm0(i,"sd",r)].

Finally, gams code includes a third representation of final demand in the form
of the cde demand system (Hanoch, 1975). This representation, details of which
are presented in Appendix D, has been part of the gtap model in gempack for
many years, and our implementation follows those of Hertel and van der Mens-
brugghe (2016) and Chen (2015). Similar to the LES demand system, this approach
permits calibrating empirical evidence on both own-price and income elasticities.
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3.1.3 Government demand (Y("g",r))

Public expenditure is a fixed-coefficient aggregate of Armington composite
goods. Within each composite domestic and imported goods trade off with a con-
stant elasticity of substitution. The unit price indices for domestic and imported
goods are given by:

pdg
ir = pY

ir
1 + tdg

ir

1 + tgd
ir

and

pig
ir = pM

ir
1 + tig

ir

1 + tig
ir

The composite price of the ith good is then:

pgir =
(

θ(pdg
ir )

1−σ + (1− θ)(pig
ir )

1−σ
)1/(1−σ)

,

in which θ represents the domestic share of public demand [theta vdfm(i,"g",r)].
The unit cost of public services (Gr) is defined by the Leontief cost coefficients:

∑
i

θi pgir = pG
r , (11)

in which θi represents the value share of commodity i in public expenditure
[theta cm0(i,"g",r)].

3.1.4 Aggregate imports (M(i,r))

An import cost index applies export taxes, trade and transport margins and
import tariffs to the producer supply prices in exporting regions:

pym
isr = pY

is
(1− txs

isr)(1 + tms
isr )

(1− txs
isr)(1 + tms

isr )
.

In the case of the soe model, the supply price pY
is is replaced by export price pX

is .
The unit price of transportation services is given by:

ptm
jisr = pT

j
1 + tms

isr

1 + tms
isr

.

Transportation margins enter as fixed coefficients with bilateral trade flows, so
the unit delivered price is a convex combination of the unit prices with weights
corresponding to base year value shares:

pytm
isr = θpym

isr + ∑
j

θT
j ptm

jisr,

in which θ represents good i share of imports [theta vxmd(i,s,r)]; and θT
j rep-

resents the value share of transportation service j in the import price
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[theta vtwr(j,i,s,r)].
Having formed a price index for bilateral imports from region s to region r,

the ces cost index can be defined on the basis of value shares and the elasticity of
substitution across imports from different regions, σ = esubmi:

cimir =

(
∑

s
θs(pytm

isr)
1−σ)

)1/(1−σ)

,

in which θs is the value share of bilateral imports from region s [theta m(i,s,r)].
The import activity (mir) has a zero profit condition which relates the unit cost

of imports to the market price of the import aggregate:

cimir = pM
ir . (12)

3.1.5 International transportation services (YT(j))

For simplicity, the unit cost of a transportation service depends on the bench-
mark value shares of region-specific services through a Cobb-Douglas cost func-
tion. Under perfect competition with free entry, the unit cost of international
transport services equals the equilibrium market price:

∏
r
(pY

jr)
θr = pT

j (13)

in which θr represents the region r share of transportation service j [theta vst(j,r)].
In the soe model, the supply price pY

is in equation is replaced by export price pX
is .

3.1.6 Sector-specific factor transformation (FT(f,r))

The unit value of sector-specific factors is defined as a cet aggregate of returns
to factor f across sectors j:

pvfm f r =

(
∑

j
θj ps1+η

f jr

)1/(1+η)

f ∈ s f .

in which θj is the sector j share of earnings for factor f [theta evom(f,j,r)].
The constant elasticity of transformation frontier defines the profit-maximizing

allocation of factors to individual sectors. In equilibrium, the unit value of the
aggregate factor is equal to the maximum unit earnings:

pS
f r = pvfm f r f ∈ s f (14)

3.2 Market clearance

Supply-demand conditions apply to all goods and factors. Benchmark de-
mand and supply quantities appear as scale factors in many of these equations,
typically multiplied by activity levels which are equal to unity in the reference
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equilibrium.11

3.2.1 Firm output (P(i,r))

Aggregate output of good i in region r in the reference equilibrium is vom(i,r):

Yirvomir = ∑
j

ddfmijr + ddfmiCr + ddfmiIr + ddfmiGr + ∑
s

dxmdirs + dstir (15)

where the compensated demand functions can be obtained by differentiating the
unit cost functions:

ddfmijr = Yjrvdfmijr

(
ciijr
pd

ijr

)σ

ddfmiCr = Cr

(
vdfmiCr

pC
r

pcir

)(
pC

ir

pdc
ir

)σ

ddfmiIr = IrvdfmiIr

ddfmiGr = GrvdfmiGr

(
pgir

pdg
ir

)σ

dxmdisr = Mirvxmdisr

(
pM

ir
pytm

isr

)σ

dstjr = YTjvstjr
pT

j

pY
jr

In the soe model (etrndxi < ∞) equation (15) is replaced by two equations, one
representing the market for domestic output and another representing the market
for exports:

Yirddmir = ∑
j

ddfmijr + ddfmiCr + ddfmiIr + ddfmiGr (16)

Yirdxmir = ∑
s

dxmdirs + dstir . (17)

In these expressions, the compensated domestic and export supply coefficients are

11 While not crucial for representation of the model as a nonlinear system of equations, we
follow the mcp convention in writing out the market clearance conditions. The equations
are “oriented”, with supply variables on the lhs and demands on the rhs. Hence, the
sense of the equation is supply ≥ demand. In the core model equilibrium prices should
always be positive, but in extensions of the standard model it might be quite common to
introduce inequalities and complementary slackness, in which case the proper orientation
of the equations is essential. Hence, in equilibrium should the price of a good be zero,
economic equilibrium is then consistent with a market in which supply > demand.
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given by:

ddmir = vdmir

(
rY

ir

pD
ir

)η

dxmir = vxmir

(
rY

ir

pX
ir

)η

.

3.2.2 Private consumption (P("c",r))

Consumer demand in region r in the reference equilibrium is vomCr hence:

CrvomCr =
RAr

pC
r

(18)

3.2.3 Composite imports (PM(i,r))

The aggregate value of imports of good i in region r in the reference equilib-
rium is vimir:

Mirvimir = ∑
j

difmijr + difmiCr + difmiGr (19)

where compensated demand functions are given by:

difmijr = Yjrvifmijr

(
ciijr

pi
ijr

)σ

difmiCr = CrvifmiCr

(
pcir

pic
ir

)σ
pC

r
pcir

difmiGr = GrvifmiGr

(
pgir

pig
ir

)σ

3.2.4 Transport services (PT(j))

The aggregate demand (and supply) for transport service j in the benchmark
equilibrium is vtwj:

YTjvtwj = ∑
isr

dtwrjisr (20)

where

dtwrjisr = Mirvtwrjisr

(
pM

ir
pytm

isr

)σ

.
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3.2.5 Primary factors (PF(f,r))

The aggregate demand (and supply) of primary factor f in region r is evom f r:

evom f r =

{
∑j dfm f jr f ∈ m f

evom f rFT f r f ∈ s f
(21)

where the demand for primary factor is given by:

dfm f jr = Yjrvfm f jr

 c f
jr

pp f
f jr

σ

.

3.2.6 Specific factors (PS(f,j,r))

The net value of benchmark payments to factor f in sector j in region r is
vfm(f,j,r):

vfm f jr

(
pS

s f ,jr

pF
s f ,r

)η

= dfm f jr (22)

where the demand for primary factor is written above.

3.3 Regional budget (RA(r))

Private and public incomes are given by :

RAr = ∑
f

pF
f revom f r + pC

n vbr − pI
rvomIr − pG

r vomGr +Rr (23)

The base year current account deficit in region r is vb(r), and region r = n
corresponds to the “numeraire region” who’s consumption prices denominates
international capital flows (following conventional static trade theory, we hold the
current account deficit fixed in counterfactual analysis). Furthermore, tax revenue
in region r consists of output taxes, intermediate demand taxes, factor taxes, final
demand taxes, import tariffs and export subsidies:

Rr = ∑jRo
jr + ∑ij

(
R f d

ijr +R
f i
ijr

)
+ ∑ f jR

f
f jr

+∑i

(
Rpd

ir +Rpi
ir +R

gd
ir +Rgi

ir

)
−∑isRxs

irs + ∑isRms
isr

(24)

Each of these components of tax revenue can be calculated as an ad-valorem or
proportional tax rate times a market price times the quantity demanded or pro-
duced.

Taxes related to Yjr include output taxes:12

Ro
jr = to

jrvomjr pY
jrYjr [REV TO(g,r)] ,

12 Tax revenues in the GAMS codes – both mcp and mge are represented by the macros
indicated in square brackets.
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tax revenue from intermediate inputs:

R f d
ijr = t f d

ijr pY
irddfmijr [REV TFD(i,j,r)] ,

R f i
ijr = t f i

ijr pM
ir difmijr, [REV TFI(i,j,r)] ,

and factor tax revenue:

R f
f jr = t f

f jr pF
f rdfm f jr [REV TF(f,g,r)] .

Taxes on household consumption of domestic and imported goods are:

Rpd
ir = tpd

ir pY
irddfmiCr, [REV TFD(i,"C",r)] ,

and
Rpi

ir = tpi
ir pM

ir difmiGr [REV TFI(i,"C",r)] .

Taxes on public demand for domestic and imported goods are:

Rgd
ir = tgd

ir pY
irddfmiGr [REV TFD(i,"G",R)] ,

and
Rgi

ir = tgi
ir pM

ir difmiGr [REV TFI(i,"G",r)] .

Export subsidies (paid by the government in the exporting region) are:

Rxs
irs = txs

irs pY
irdxmdirs [REV TXS(i,r,s)] ,

and import tariff revenues are given by:

Rms
isr = tms

isr

(
pY

is(1− txs
isr)dxmdisr + ∑

j
pT

j dtwrjisr

)
[REV TMS(i,s,r)] .

4. Implementation

This section describes the implementation of gmr and soe models in gams us-
ing the gtap 9 dataset. We first describe the content of the distribution directory,
and provide the logic of the model buildstream. We then discuss a number of
issues related to data manipulation, namely aggregation across commodities and
regions, data filtering and re-balancing. Finally, we discuss calibration of elastic-
ities for international trade in gmr and soe models, providing an intuitive (Mar-
shallian) argument on how models can be parametrized in order to approximate
the same responsiveness to policy shocks.

4.1 Distribution Folders

In this section we overview the structure of the distribution directory. Practical-
ities on how to run the code is provided in Appendix B. Details of the directories
and gams programs provided in gtapingams version 9 are provided in Appendix
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E. More detailed comments may also be found interspersed in the GAMS code
presented in Appendix F.

The distribution directory contains seven second-level subdirectories, whose
content we now overview in alphabetical sequence:

build contains a command script which automates dataset construction and test-
ing. This script (build.gms) calls programs stored in the code subfolder,
including flex2gdx.gms, which translates data from .har to .gdx format,13

filter.gms, a program which filters and then rebalances the core dataset
(see data filtering section below), gtap9data.gms, a program which reads
a .gdx gtapingams dataset, gtapaggr.gms, a program which performs
dataset aggregation, and cdecalib.gms, a program which computes co-
efficients of the cde demand system which are consistent with price and
income elasticities of demand.

The distributed copy of build.gms reads, filters and aggregates data files
for 2011. At the end of the computational process, listing files can be found
in the build directory, while the associated .gdx data files generated by
these routines are saved in the gamsdata directory.

This directory also contains programs for consistency testing of generated
datasets. test.gms runs bmkchk.gms, cdechk.gms and mcpmge.gms.
See Appendix E for a description of these programs.

code contains the main gams program files which are included in this distribu-
tion. These files need not reside in this directory, but they are self con-
tained and should always be moved as a collection. Two of the files in this
directory contain gams code for the canonical static model, both specified
as a mixed complementarity problem in two alternative representations:

mge.gms The standard model with tabular gams/mpsge representation,
and

mcp.gms The standard model with an algebraic gams/mcp representa-
tion.

defines contains mapping files for aggregations of gtap 9 datasets. Files ending
with .map define an aggregation in terms of the source dataset and map-
pings from sets in the source to sets in the target. Three single dimensional
sets and three two-dimensional tuples are included in each mapping file.
The sets and tuples are defined as follows:

13 The .har format is used in the original distribution of the gtap 9 Data Base. These
data files need to be obtained separately and stored in the gtapdata subdirectory, which
is discussed below.
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set rr Regions in the aggregation,
ii Commodities in the aggregation,
ff Primary factors in the aggregation,
mapr(r,rr) Mapping of source to target regions (from-to),
mapi(i,ii) Mapping from source to target commodities
mapf(f,ff) Mapping from source to target factors;

As an example, here is a set and mapping which aggregates skilled labor
types:

set ff Factors in the aggregated data /
skl Skilled workers,
lab Agricultural and unskilled workers,
lnd Land,
cap Capital,
res Natural resources /;

set mapf(f,ff) Factor aggregation assignments /
mgr.skl Officials and mangers (ISCO-88 Major Groups 1-2),
tec.skl Technicians and associate professionals
clk.skl Clerks
srv.lab Service and market sales workers
lab.lab Agricultural and unskilled workers (Major Groups 6-9)
lnd.lnd Land,
cap.cap Capital,
res.res Natural resources /;

Four alternative regional / commodity aggregation are included in the
defines directory to illustrate how aggregation works in gtapingams. The
first is the full disaggregate dataset gtapingams.map which retains all
regions and markets from the gtap 9 Data Base after original data have
been filtered and a few sector labels have been changed.14

Three aggregated datasets are based on regional disaggregation which
distinguishes the G20, other oil exporters, a composite region represent-
ing other low income countries and a composite region representing other
middle income countries. The g20 iea aggregates commodities into 23

sectors included in the International Energy Agency energy database, and
g20 macro aggregates to a four commodity sectoral mapping distinguish-
ing agriculture, manufacturing, services and energy.

doc contains the paper you are reading (please check the version).

14 The sectoral identifier which differ from the gempack model are as follows: oil (crude
oil) is relabeled cru, coa (coal) becomes col, p c (petroleum and coal products) becomes
oil, ely (electricity) becomes ele, and ele (electronic equipment) becomes eeq.
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forensics contains gams programs illustrating how the distribution can be used to
carry out policy analysis. Specifically, we provide code to evaluate the
sensitivity of unilateral trade tax reform with respect to final demand sys-
tem and model closure. Program ssagen.gms generates ssasolve.gms and
ssamerge.gms, gams scripts which invokes a set of jobs in parallel and
then merges the model results into a pivot data format. The jobs provide
a sequence of calculations under alternative closures and policy region,
each corresponding to an invocation of the scenario file tgrid.gms. Results
from the sequence of simulations are merged into a PivotChart dataset in
an Excel workbook.

gamsdata contains the datasets generated by running build.gms in the build di-
rectory. More specifically, files that are created and stored in this directory
have a GAMS data-exchange (*.gdx) extension and are constructed data
files that are either used as the source data for aggregation (e.g. gsd.gdx)
or the target data emerging from the data aggregation (e.g. the filtered
gtap data stored as gtap9ingams.gdx), data files which are then then used
in conjunction with the model files). Here are the sizes of the 2011 datasets
produced for a 2011 base year:

gsd.gdx 43,910,349 ! From flex2gdx.gms
gsd_5.gdx 26,690,775 ! From filter.gms -- nd=5
gtap9ingams.gdx 25,923,318 ! From gsd_5
g20.gdx 3,770,394 ! From gtap9ingams
g20_iea.gdx 992,710 ! From g20 (23 sectors)
g20_macro.gdx 113,224 ! From g20 (4 sectors)

gtapdata contains .zip files from the gtap distribution (Flexagg package). These
files are not provided in the gtapingams distribution, but must be copied
here by the user. They may include any or all of these files:

23-Aug-2016 2:57:22p 77,616,861 flexagg9aY04.zip
23-Aug-2016 2:57:38p 80,406,868 flexagg9aY07.zip
23-Aug-2016 2:57:08p 80,056,730 flexagg9aY11.zip

4.1.1 Aggregation across commodities

Any gtapingams dataset may be aggregated into fewer regions, sectors and
primary factors. This permits a modeler to do preliminary model development
using a small dataset to ensure rapid response and a short debug cycle. After hav-
ing implemented a small model, it is then a simple matter to expand the number
of sectors and/or regions in order to obtain a more precise empirical estimate.

Conveniently, all gtap datasets are defined in terms of three primary sets: i,
the set of sectors and produced commodities, r the set of countries and regions,
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and f the set of primary factors. Table A.1 presents the identifiers for the 57

gtap 9 sectors (plus CGD investment goods) in their most disaggregate form (see
Appendix A). These sectors may be aggregated freely to produce more compact
dataset.

Aggregation across commodities involves the reclassification of goods at a
benchmark point in the price space. If we index the disaggregate goods using i, j and
index the corresponding aggregated goods with I, J, we can identify commodities
combined to form I as i ∈ II . Aggregation at reference prices p̄i implies that
the value of aggregate demand equals the value of the constituent disaggregate
demand:15

p̄ICI( p̄) = ∑
i∈II

p̄iCi( p̄). (25)

Furthermore, consistent exact aggregation implies that both demand and the elas-
ticity of demand at the benchmark point in the aggregate model coincides with
the demand response in the disaggregate model, taking benchmark prices into
account. Formally:

p̄J
∂CI

∂pJ

∣∣∣∣
p̄
= ∑

i∈II ,j∈IJ

p̄j
∂Ci

∂pj

∣∣∣∣
p̄

. (26)

An implication is that the Allen-Uzawa elasticity of substitution (aues) matrix of
the aggregate model has to correspond to value share-weighted average of terms
in the aues matrix of the disaggregate model:

σ̂I J = ∑
i∈II ,j∈IJ

θi

θ̂I

θj

θ̂J
σij (27)

where θ̂I , θ̂J are the value share of inputs I and J in the aggregate cost function,
and σ̂ is the aues matrix in terms of the aggregate prices.16

15 We use p̄i and p̄I in this expression to emphasize the role of price as an aggregation
weight, but without loss of generality, we may assume that the reference price vectors
p̄i = 1 ∀i and p̄I = 1 ∀I. This Harberger normalization greatly simplifies notation.
When units are scaled so that the unit cost at this point is one, values shares at this point
are identically equal to share parameters in the ces function, i.e. αi = θi, and benchmark
demands are equal to value shares, i.e. C̄i = θi.
16 Note that exact aggregation based on (27) is only possible when working with a specific
functional form, in which case own-price elasticities in the aggregated model are:

εI = θ̂IσI I = θ̂I ∑
(ij)∈II

θi

θ̂I

θj

θ̂I
σij (28)

Note also that if we had information about benchmark value shares (θi) and benchmark
elasticities of demand (εi), but no information regarding off-diagonal terms in the aues

matrix σij, i 6= j, the vectors θi and εi may or may not be consistent with a given cost
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In practice, our aggregation routine proceeds as follows. First, we construct
the full aues matrix from the cde parameters at the benchmark point (subparir
in the gtap Data Base), using expression (D.4) in Appendix D. Second, to ensure
a consistent demand response when the data is aggregated across commodities,
we use the aggregated value shares and the diagonal terms of the aues matrix to
recalibrate coefficients of the cde demand system.

4.1.2 Aggregation across regions

Suppose that we aggregate across regions as well as across commodities.17 Cost
functions in regions r and r′ are disjoint, so the demand response for pir does not
depend on pir′ . We therefore begin by calculating price elasticities for the aggre-
gate goods within each region, and then produce a quantity-weighted aggregation
of elasticities across regions. Therefore, the own-price elasticity of demand for ag-
gregate commodity I in aggregate region R is given by:

εIR =
∑r∈RR

εIrC̄Ir

∑r∈RR
C̄Ir

,

where C̄Ir is benchmark consumption. As noted in footnote 15, because of the
Harbgerger normalization, it is also equal to the value shares.

function. In this setting, aggregation can use a simplifying assumption that the average
off-diagonal aues in the aggregation-relevant terms equals the overall average off-diagonal
value for each of the constituent goods. From this it follows that average share-weight off-
diagonal AUES value associated with input i is given by:

σ̄i =
εi

θi − 1

Substituting σ̄i for σij in (28), we have a formula for an inexact aggregation:

ε̂I = ∑
i∈II

(
1− 1/θ̂I
1− 1/θi

)
θi
θI

εi (29)

In either exact aggregation (working from a full aues matrix) or inexact aggregation (based
on average off-diagonal values), we find that θi < θI ∀i ∈ Ii, hence the elasticity of
demand for composite good I is less than a weighted sum of the elasticities of demand in
the constituent goods:

|ε̂I | < ∑
i∈II

θi

θ̂I
|εi| .

17 Note that regional identifiers in the full dataset correspond to ISO alpha-3 country
codes. Users can define their own aggregations of the gtap Data Base and use any labels to
describe regions. For technical reasons, if a dataset is to be used with mpsge, then regional
identifiers can have at most 4 characters. Table A.2 presents the three-character identifiers
which are normally used for primary factors.
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Own-price elasticities together with value shares define diagonal terms in the
Allen-Uzawa elasticity matrix. To compute off-diagonal aues terms, we use a
value-weighted aggregation of cross-price elasticities across regions. In particular,
cross-price (compensated) elasticities are given by:

εI Jr =
∑i∈II ,j∈IJ

σijrC̄irC̄jr

∑i∈II ,j∈IJ
C̄irC̄jr

θJr.

To ensure that these terms are consistent with the adding up condition of the
aues matrix, we average these terms across constituent regions and scale them
appropriately:

σI JR = λIR

(
∑r∈RR

εI Jr ψI JrR

θJR

)
∀I 6= J ,

in which

ψI JrR =
C̄IrC̄Jr

∑r′∈RR
C̄Ir′ C̄Jr′

,

and the scaling factor λIR is chosen so that ∑J σI JR θJR = 0. Given our somewhat
ad-hoc treatment of off-diagonal terms, it seems sensible to define aggregations
from the gtap Data Base with full commodity and regional details rather than
from a dataset which has already been aggregated.

4.2 Data filtering

The gtap source data in original form presents substantial challenges for cal-
ibrated models processed using direct solution methods (e.g., path, conopt or
ipopt). In our experience, most numerical problems with gtapingams models can
be traced to density of the source data in which we find large numbers of small co-
efficients. These coefficients portray economic flows which are a negligible share
of overall economic activity, yet impose a significant computational burden during
matrix factorization.

In order to “filter” these economically insignificant value and reduce dimen-
sionality of the problem, gtapingams includes a gams program (filter.gms) which
removes small values which are smaller than a specified tolerance level. An input
to this program (nd) determines the filter tolerance, i.e. the number of decimals
for the smallest coefficient to be retained in the data. For example, when nd = 4,
the smallest coefficient in the benchmark social accounting matrix is 0.0001. When
nd = 6, the smallest number is 0.000001, etc. Larger values of nd retain a larger
number of small coefficients in the filtered dataset. Filtering makes a gtap Data
Base smaller, as illustrated in Table 6 in which it can be seen that filtering reduces
the size of a gtap Data Base by somewhere between 20% and 50%, depending on
the filtering tolerance.

Most of the reduction in non-zeros results from the elimination of small inter-
mediate inputs and bilateral trade flows. Importantly, the filtering procedure has
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Table 6. Filtering results for entire dataset (2011 data).

Nonzeros (1000)
Dataset After Filtering % Reduction

nd = 4 5 6 4 5 6
Domestic Intermediate vdfm 478.8 233.3 290.7 342.2 51 39 29

Imported Intermediate vifm 478.8 186.5 247.6 300.3 61 48 37

Bilateral trade vtwr 776.4 175.4 314.2 463.8 77 60 40

Transport margins vxmd 109.8 400.9 591.1 766.8 63 46 30

differential impacts on regions and markets in the database, and the choice of a
filter tolerance depends to some extent on the size of the countries to be included
in a given analysis. For our analysis of the G20 countries in the present paper, a
filter tolerance nd = 5 seems suitable, whereas nd = 7 leads to numerical prob-
lems due to small coefficients. Therefore, depending on the nature of the policy
question under investigation, different filtering strategies may be adopted. Indi-
vidual researchers may have their own opinions about how to select parameter
values should be rounded to zero. The version of filter.gms provided with the
gtapingams distribution is intended to provide a starting point for this step in the
dataset development process.

Removing small entries from the dataset implies that the resulting filtered
dataset no longer represent a micro-consistent matrix. However, unlike earlier
versions of gtapingams, we do not use a nonlinear optimization framework to
rebalance the data. Instead, filter.gms moves imbalances resulting from omit-
ted coefficients into either factor supplies or investment demand depending on
the sign of imbalance which appears following filtering. This approach to recon-
ciliation is simple to implement provided that the inconsistencies resulting from
filtering are small. The reconciliation methodology implemented in filter.gms
is perhaps less useful for large scale recalibration exercises such as might arise
with a wholesale change in benchmark tax rates or production structure.

In practice, we note that for nd = 5, the data rebalancing procedure imposes
very small changes in the remaining nonzero elements, but it substantially reduces
the number of coefficients in the dataset as indicated in Table 6. Nearly half of
the trade flow and imported intermediate demand coefficients can be dropped,
resulting in a reduction in the size of the dataset from nearly 44 MB to 27 MB.
More importantly, sparsity tends to improve robustness. Larger models are easier
to solve when the underlying datasets have been carefully filtered.

4.3 Calibration of trade elasticities

Our soe model is based on the idea that goods are differentiated both on the
basis of origin and destination. In this setting, production supplies goods for the
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domestic and export markets with a technology capturing the idea that the quan-
tities supplied to these submarkets depend on relative prices. Each traded good
then has three associated trade elasticities: i) etadx(i), the elasticity of trans-
formation between goods produced for the the domestic and export markets; ii)
esubdm(i), the elasticity of substitution between domestic and imported vari-
eties entering intermediate and final demand, and iii) esubm(i), the elasticity of
substitution between imports from different countries.

In the gmr model corresponding to the standard gtap model, ηDX = ∞, so
goods produced for the domestic and export markets are perfect substitutes. In
the gtapingams framework, ηDX can take on any nonnegative value. A finite
value is typically specified in the soe model. When doing this, we adjust the
domestic-import demand elasticity to maintain consistency with trade responses
in the standard gtap model. We interpret consistency from a Marshallian per-
spective. In a given market, suppose the import demand elasticity is ε,18 and
benchmark rate of protection is t̄. Scaling units so that the FOB supply price is 1,
the demand price is 1 + t̄, and the quantity demanded in the benchmark is 1.

When the import supply elasticity from partner countries, η, is infinite, the
import supply price is fixed (p = 1). Therefore, if the tariff was removed and de-
mand is isoelastic, the new equilibrium quantity and price (in an isoelastic model)
are given by:

q∗ = (1 + t̄)|ε| . (30)

With a fixed import supply price, the quantity demanded at p = 1 is the new
equilibrium. This outcome is illustrated in Figure 9a, in which benchmark import
demand is at price-quantity point a, benchmark import supply is at point b, and
there is a benchmark trade barrier equal to 20%. The free-trade equilibrium is at
point c, reflecting benchmark import demand elasticity ε = 5.

Now instead of a perfectly elastic import supply we consider η < ∞. In this
case, removing tariffs implies a new equilibrium supply price p∗, and the associ-
ated equilibrium supply and demand q∗ from (30) is given by:

q∗ =
(

1 + t̄
p∗

)|ε|
= (p∗)η .

The aggregate trade response under η < ∞ equals the response with η = ∞ when
the demand elasticity (ε) is adjusted upward:

p∗ = (1 + t̄)|ε|/η ,

18 When value shares are small, the price elasticity of demand for imports is approxi-
mately equal to −esubdm(i).
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Figure 9. Consistent Calibration of ε and η.
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the reparametrized elasticity of demand is given by:

|ε| = |ε|
1− |ε|/η

.

Let θ = 1 − |ε|/η. Consistency of trade quantity responses in the revised
model implies that θ ≥ 0. When η = ∞, then we have the original model with
a horizontal import supply curve. Setting θ = 0.3, the new Marshallian model
appears in Figure 9b. As in the previous model, a and b are benchmark demand
and supply with a 20% tariff barrier. While free trade in the original model is
at point c, free trade in the revised model is at point d. Supply is less elastic,
so social surplus increases are captured by the supply side of the market, and
the equilibrium price following tariff removal increases by over 10% from the
benchmark level.

In the gams code, this adjustment takes place at the top of gtap9data.gms
file. The run-time environment variable thetadx defines how the adjustment of
export supply and import demand is to be calibrated to match the gmr model.
The associated assignments are reported here.

parameter etadx(g) Export elasticity of transformation D vs E,
esubdm(i) Elasticity of substitution D vs M,
vxm(g,r) Export market supply;

$if not set thetadx $set thetadx 0.5

etadx(i)$(1-%thetadx%) = esubd(i)/(1-%thetadx%);
etadx(i)$(not (1-%thetadx%)) = +inf;
esubdm(i) = esubd(i)/%thetadx%;
vxm(i,s) = (vst(i,s) + sum(r,vxmd(i,s,r)))$(1/etadx(i));

5. Illustrative Calculations

We conclude by reporting on a few simulations which illustrate the importance
of model closure for assessing the economic effects of policy reform. The gmr

and soe models are well suited to help understand the role of terms of trade in
policy experiments. In these simulations, we consider on the economic impact
of unilateral, proportional adjustment of regional import tariffs and export taxes.
Furthermore, as a matter of illustration, we will focus only on results for the
United States (usa) and China (chn).19

We start by summarizing the commodity-based and regional structure of taxes
on imports to usa and chn in the 2011 base year database. This is reported in
Figures 10 and 11 respectively, with the top panel (a) reporting data for the US,

19 Region chn in our G20 aggregation includes GTAP regions chn and hkg.
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Figure 10. Trade taxes and tariff revenue by commodity.
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Figure 11. Trade taxes and tariff revenue by partner.
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and the bottom panel (b) for China. In the figures, we report both import tariff
rates by the importing country and export taxes applied by the exporting regions.
We further report total tariff revenue for each commodity or region in million US$.

As the top panel of figure 10 shows, taxes applied to usa imports are highest
on wearing apparel (wap), textiles (tex), and leather (lea). In the gtap 9 Data
Base, these goods are subject to substantial export taxes. Among the highest taxed
goods, the highest tariff revenue is associated with imports of chemicals, rubber
and plastic products (crp). Data for China, reported in the bottom panel of figure
10, shows that imports to China of sugar (sgr), “wool, silk-worm cocoons” (wol),
and “motor vehicles and parts” (mvh) are subject to tariffs of 20% or more, but the
largest tariff revenue (among the highest taxed imports) are on “machinery and
equipment” (ome), crp and crude oil (cru).

Turning to the regional structure of taxes on imports, data for the US reported
in figure 11 suggest that the highest trade taxes are applied on imports from
Russia, China, India and Indonesia. Export taxes are the largest fraction of taxes
on imports from Russia, China and India. Tariff revenue is concentrated on the
countries which have the highest exports to the usa, China, Canada, Mexico and
the European Union. Tariff rates are, however, quite low on these imports.

The bottom panel of figure 11 summarizes the regional structure of taxes on
imports to chn in 2011. Taxes on imports to China are highest from Russia,
again largely on the basis of export taxes applied by Russia. China’s import tariffs
average around 5% on imports from the OECD countries (Japan, European Union,
the United States). The largest share of import tariff revenue is associated with
imports from middle income countries (mic).

Overall, average taxes on imports by the US (including both export taxes ap-
plied by trade partners and import tariffs collected by usa) are a little less than
2%. Taxes on imports to China average a bit more than 4%. We note that relative
to other countries in the database, the United States and China have relatively
low trade taxes. Taxes in both countries are far from uniform, hence proportional
increases in trade taxes might be expected to increase the distortionary cost of the
existing tax system.

The results of our stylized policy experiment, in both the soe and gmr models,
are shown in Figure 12. Unilateral proportional adjustments to the average tax
rate vary from 0% (free trade) to 10%, and we report the Hicksian equivalent
variation (EV) as a measure of the welfare change associated with varying tax
rates. Furthermore, in the figures the benchmark situation described above is
represented by a solid dot. Note also that for both models we use the cde model
to represent final demand, and study the sensitivity of results to final demand
specification in Figure 13 below.

In the gmr framework, China increases welfare through a small decrease in trade
taxes (to 4%) while the US can only slightly increase welfare by increasing trade
taxes (to roughly 4.5%). In these simulations, the welfare impact depends whether
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Figure 12. Welfare effect of unilateral policy.

40



Journal of Global Economic Analysis, Volume 1 (2016), No. 2, pp. 1-77.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Average trade tax rate (%)

H
ic

ks
ia

n
EV

(%
)

(a) USA.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Average trade tax rate (%)

H
ic

ks
ia

n
EV

(%
)

(b) China.

CDE demand system
Cobb Douglas demand system
Linear expenditure system

Figure 13. Demand system sensitivity.

41



Journal of Global Economic Analysis, Volume 1 (2016), No. 2, pp. 1-77.

one works with a multiregional or small open economy closure. Although the
gmr and soe models are based on identical benchmark datasets, the absence of
terms of trade effects in the open economy setting has significant implications for
the effects of changes in tax policy. In the gmr model, China gains from a small
reduction in tariffs, whereas in the soe model, China gains the most from free
trade.

Finally, we compare gmr model results across alternative assumptions about
final demand. Results from this comparison are reported in figure 13. In con-
trast to the importance of the model closure, the structure of final demand only
modestly influences results for this specific set of simulations. This is especially
striking for the US, as the welfare effect of trade taxes is almost identical across
alternative final demand specifications. For China, differences are somewhat more
pronounced, but they are quantitatively much less important than differences that
can be attributed to alternative trade closures.

6. Concluding Comments

This paper has documented two general equilibrium models implemented in
gams based on the gtap version 9 Data Base. The global multiregional model based
on an Armington representation of bilateral trade flows in which terms of trade
is endogenous, and a small open economy model, in which relative prices between
distinguished regions are endogenous, but rest of world prices and the current
account are fixed. These two models represent the “canonical” representations of
international trades responses, one in which terms of trade are endogenous and
another in which relative prices in rest-of-world are held fixed.

The model features three alternative demand systems: Cobb Douglas, Linear
Expenditure and Constant Difference in Elasticities. While the model based on cd

preferences is the most parsimonious, it cannot accommodate empirical estimates
of own-price and income elasticities. This limitation is addressed by the two other
alternatives, the les and the cde models. As described in this paper, the cde model
offers sufficient degrees of freedom that it can be calibrated to both income and
own-price elasticities whereas the les model can be calibrated to match income
but only average price elasticities of demand. Calculations focusing on substantial
price shocks suggest demonstrate that although the les is less flexible than the
cde, the welfare effects of unilateral tariff reforms are robust with respect to the
structure of final demand.

All in all, the set of models made available through this paper offers an starting
point for quantitative study of international trade policy. We believe that evidence
based analysis requires that the analyst understand how structural assumption
affect the results. For the particular policy illustration considered here, it seems
that trade closures matter a lot, whereas the representation of final demand is
quantitatively less important. This will, of course, depend on the types of policies
considered.
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Appendix A. GTAP Sectors and Primary Factors

Table A.1. Commodities and Industries in the gtap 9 database

Identifier Definition Identifier Definition

pdr Paddy rice lum Wood products
wht Wheat ppp Paper products, publishing
gro Cereal grains nec p c Petroleum, coal products
v f Vegetables, fruit, nuts crp Chemical,rubber,plastic prods
osd Oil seeds nmm Mineral products nec
c b Sugar cane, sugar beet i s Ferrous metals
pfb Plant-based fibers nfm Metals nec
ocr Crops nec fmp Metal products
ctl Cattle,sheep,goats,horses mvh Motor vehicles and parts
oap Animal products nec otn Transport equipment nec
rmk Raw milk ele Electronic equipment
wol Wool, silk-worm cocoons ome Machinery and equipment nec
frs Forestry omf Manufactures nec
fsh Fishing ely Electricity
coa Coal gdt Gas manufacture, distribution
oil Oil wtr Water
gas Gas cns Construction
omn Minerals nec trd Trade
cmt Meat: cattle,sheep,goats,horse otp Transport nec
omt Meat products nec wtp Sea transport
vol Vegetable oils and fats atp Air transport
mil Dairy products cmn Communication
pcr Processed rice ofi Financial services nec
sgr Sugar isr Insurance
ofd Food products nec obs Business services nec
b t Beverages and tobacco products ros Recreation and other services
tex Textiles osg PubAdmin/Defence/Health/Educat
wap Wearing apparel dwe Dwellings
lea Leather products cgd Aggregate investment
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Table A.2. Primary Factors in the gtap 9 database

Identifier Definition

Mobile factors:
mgr Officials and Managers legislators (ISCO-88 Major Groups 1-2),
tec Technicians and associate professionals
clk Clerks
srv Service and market sales workers
lab Agricultural and unskilled workers (Major Groups 6-9)
cap Capital

Sluggish factors:
lnd Land
res Natural resources
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Appendix B. Practicalities

System Requirements

You will need to have the following:

• A computer.
• A gtap 9 license and data file.
• A gams system, Version 24.7.1 or newer.
• A nonlinear solver (PATH, IPOPT or CONOPT).
• The MPSGE subsystem (optional)

Getting Started

The gtapingams package is distributed as a zip file containing the directory
structure and gams programs which can be unzipped into a clean working direc-
tory. gtap source data are not distributed with the gtapingams system. In order
to generate models with the gtapingams tools, it is necessary to obtain the gtap

9 distribution archives.
Here are the steps involved in installing gtapingams:

1) Create an empty root directory for gtap.
2) Unzip gtap9ingams.zip in this directory.
3) Install the gtap data file flexagg9aY11.zip into the gtapdata subdi-

rectory.20

4) Connect to the build directory and execute gams build.gms This will
take some time to complete. The batch file is set up to begin with the
2011 base year data. Choose a different year if you wish.

5) Run test.gms in the build directory to evaluate benchmark consis-
tency of the generated datasets.

6) The gams programs in the forensics directory provide a template for
how to conduct counterfactual policy simulations, using Excel PivotTa-
bles and PivotCharts to synthesize model output.

20 You need only one data files, but these data are provided for three different years in
the GTAP “flexhar” distribution.
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Appendix C. The Linear Expenditure System

The linear expenditure system (les or Stone-Geary) utility function was invented
by Roy Geary and first estimated by Richard Stone. An early analysis by Frisch
(1959) calibrated the functional form using a parameter named the ‘money flex-
ibility’. Subsequently, Sato (1972) and Powell (1992) pointed out the correspon-
dence between Frisch’s money flexibility and the elasticity of substitution among
commodities. Here we employ Powell’s insight to calibrate the linear expendi-
ture demand system to benchmark data consisting of expenditure shares, income
elasticities of demand and the share-weighted compensated elasticity of demand.

Let xi denote aggregate demand for good i. In the les demand system, xi is
the sum of subsistence demand (si) and discretionary demand (di). Subsistence
demand remains fixed on a per-capita basis while discretionary demand depends
on commodity prices and income.

Given homogeneity of prices we may assume that the benchmark expenditure
and prices of all goods equal unity, and the benchmark demand for commodity i
equals θi, the benchmark value share of commodity i in final demand. Demand
for i resulting from les utility maximization can be written:

xi = si + d̄i
1−∑j pjsj

βpi
= si + d̄i

c(p)
pi

u (C.1)

where

M indicates income (equal to unity at the benchmark point),
pi is the price of good i (equal to unity at the benchmark point),
β is the benchmark value share of discretionary demand

(
= ∑i d̄i

)
,

αi is the value share of good i in discretionary demand
(
= d̄i

β

)
c(p) is the price index of discretionary demand

(
= ∏i pαi

i

)
, and

u is an indirect utility index for discretionary demand21

(
=

M−∑j pjsj

βc(p)

)
Utility maximization provides a demand function xi(p, M). In the gtap setting,

inputs to the demand system calibration are:

θi The expenditure share of good i

21 The money-metric utility index for aggregate utility is U = 1 + β(u− 1)
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εi The compensated own-price elasticity of demand:

εi =
∂xi(p, M(U))

∂pi

∣∣∣∣
U=Ū

pi

xi

ηi The income elasticity of demand for good i

ηi =
∂xi(p, M)

∂M
M
xi

.

Calibration of the les to θi, εi and ηi involves allocating budget shares across
subsistence and discretionary demand, subject to the constraint:

θi = si + d̄i

Differentiating (C.1) with respect to M, the income elasticity of demand is given
by:

ηles

i =
1
β

(
1− si

θi

)

This expression permits us to calibrate si and d̄i in terms of θi, β and ηi:

si = θi(1− βηi)

and

d̄i = θi − si = βηiθi.

and hence αi = ηiθi.

Diagonal terms in the Slutsky matrix of the compensated demand function at the
benchmark point can be found by differentiating (C.1), holding u = 1:

∂xi

∂pi
= d̄i(αi − 1),

hence

εles

i = βηi(αi − 1) = βηi(ηiθi − 1) (C.2)

The discretionary expenditure share, β, is a free parameter which can be cali-
brated to target average compensated price elasticities, i.e.

min
β

∑
i

θi (εi − βηi (ηiθi − 1))2 ,
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(a) β = 0.65, ε̄ = −0.28 (b) β = 0.30, ε̄ = −0.14

..

(c) β = 0.10, ε̄ = −0.05

Figure C.1. Calibration with Alterative Price Elasticities

hence, if we calibrate β from to match average own-price elasticities, we have:

β =
∑i θiεi

∑i ηiθi(ηiθi − 1)

One consequence of this calibration is that when elasticities are high, subsis-
tence demands may be negative, producing some difficulty in interpretation. An
alternative approach is to fix β at maximum value for which subsistence demands
are non-negative:

β = min
i

1
ηi

=
1

ηmax
,

and then replace the Cobb-Douglas utility function over discretionary demand
with a constant-elasticity-of-sustitution (ces) utility function. The unit cost func-
tion is then

cces(p) =

(
∑

i
ηiθi p1−σ

i

)1/(1−σ)

and the demand function is

xi = si + d̄i

(
cces(p)

pi

)σ

u.

Given any value of β, the elasticity of substitution in discretionary demand can
then be calibrated to match the average own-price elasticity:

σ =
∑i θiεi

β ∑i ηiθi(ηiθi − 1)
.
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Appendix D. The CDE Demand System

Theory and Analytics

Our implementation of the cde model follows Chen (2015). In the cde model,
the utility index U for a given region (subscript r suppressed) is defined implicitly
by the following equation:

∑
i

θiUei(1−αi)

(
Pi

C

)1−αi

= 1 (D.1)

where C is the shadow price on the budget constraint, αi is the substitution param-
eter (subpari in the gtap database), and ei is the income parameter (incpari).

In the cde model C is dual to the budget constraint,

∑
i

Pixi = M

and demand functions can be derived using Roy’s identify:22

xi =
∂C/∂Pi

∂C/∂M
= θi

U(1−αi)ei(Pi/C)−αi

∑j, U(1−αj)ej(Pj/C)−αj

While U may be interpreted as a utility index, it does not correspond to a
money-metric measure. The corresponding Hicksian welfare index (W) corre-
sponds to the cost index C which solves (D.1) with commodity prices equal to
unity, i.e. W solves

∑
i

θiUei(1−αi)

(
1

W

)1−αi

= 1. (D.2)

Here is a gams model which evaluates cde demand across commodities i and
regions r ∈ rc. We have n + 3 variables (xi, C, U and W) determined by n + 3
equations. While the cde model is essentially a nonlinear system of equations,
we write down the model using mixed complementarity syntax so as to associate
equations with variables.23

22 The partial derivatives ∂C/∂Pi and ∂C/∂M are obtained by differentiating (D.1).
23 If U(r) is fixed prior to a cde solve, the corresponding budget(r) constraint is auto-
matically dropped thereby providing the compensated demand response.
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variables D(i,r) Demand,
C(r) Price index,
U(r) CDE Utility index
W(r) Hicksian utility index;

equations ddef, budget, choice;

ddef(i,rc(r))$theta(i,r)..
D(i,r) * sum(j, theta(j,r) * U(r)**((1-alpha(j,r))*e(j,r))

* (P(j,r)/C(r))**(1-alpha(j,r)))
=e= theta(i,r)*U(r)**((1-alpha(i,r))*e(i,r))

* (P(i,r)/C(r))**(-alpha(i,r));

budget(rc(r))..
sum(i, D(i,r)*P(i,r)) =e= M(r);

choice(rc(r))..
sum(i, theta(i,r) * U(r)**((1-alpha(i,r))*e(i,r))

* (P(i,r)/C(r))**(1-alpha(i,r))) =e= 1;

welfare(rc(r))..
sum(i, theta(i,r) * U(r)**((1-alpha(i,r))*e(i,r)) *

(1/W(r))**(1-alpha(i,r))) =e= 1;

model cdeeval /ddef.D, budget.U, choice.C, welfare.W/;

The price elasticity of demand in this model is given by:

εCDE
i = θi

(
2αi −

(
∑

k
θkαk

))
− αi

and the income elasticity of demand is given by:

ηCDE
i =

ei(1− αi) + ∑k θkekαk

∑k θkek
+ αi −∑

k
θkαk

Calibration

Calibration of the cde parameters involves a least squares optimization model
of the form:

min
α,e ∑

i
θi

((
εCDE

i − εi

)2
+
(

ηCDE
i − ηi

)2
)

(D.3)

Here is a gams model which calibrates cde demand across commodities i and
regions r ∈ rc:
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variables
E(i,r) Substitution parameter,
ALPHA(i,r) Income parameter

EPSILONV(i,r) Calibrated own-price elasticity of demand,
ETAV(i,r) Calibrated income elasticity of demand;

equations objcde, epsilondef, etadef;

objcde.. OBJ =e= sum((i,rb(r))$theta(i,r), theta(i,r) *
(sqr(EPSILONV(i,r) - epsilon(i,r))) +
sqr(ETAV(i,r) - eta(i,r)));

epsilondef(i,rb(r))$theta(i,r)..
EPSILONV(i,r) =e= theta(i,r) *

(2*ALPHA_(i,r)-sum(k,theta(k,r)*ALPHA_(k,r))) - ALPHA_(i,r);

etadef(i,rb(r))$theta(i,r)..
ETAV(i,r) =e=

(E(i,r)*(1-ALPHA_(i,r)) + sum(k,theta(k,r)*E(k,r)*ALPHA_(k,r))) /
sum(k,theta(k,r)*E(k,r))

+ (ALPHA_(i,r) - sum(k,theta(k,r)*ALPHA_(k,r)));

model cdecalib /objcde, epsilondef, etadef/;

Finally, we note that in the cde model the Allen-Uzawa elasticities of substitu-
tion for compensated demand are given by:

σCDE
ij =

{
αi + αj − (∑k θkαk) i 6= j
2αi − (∑k θkαk)− αi

θi
i = j (D.4)

The “constant difference of elasticities” feature of the cde demand system is evi-
dent through the calculation based on the AUES elasticities of sustitution:

σik − σjk = αi − αj

Parallel Processing

The gams program cdecalib.gms has a runtime environment variable named
maxthreads. This variable determines whether the cde calibration is executed
one region at a time or, taking advantage of multi-core processors, several regions
at a time. When threads=1, the program runs in serial model and solutions
listings are generated for each calibration. Otherwise, solution listings are sup-
pressed and multiple (typically 8) demand system calibrations are solved at once.

The grid computing facilities are a relative new and evolving feature in gams
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programming, and they are very useful for applied general equilibrium modeling,
so we provide some annotated gams code which describes how jobs are submitted
and collected:

* When handle(r)=0, region r is inactive, otherwise

* it is currently being solved:

parameter handle(r) Pointer to a grid solve job;

* When submit(r)=yes, the calibration job for region r

* is ready to submit. done(r)=yes when region r is completed.

set submit(r) List of regions to submit,
done(r) List of regions which are completed;

* Initialization:

done(r) = no;
handle(r) = 0;

* Open a file which can be used to update the title bar:

file ktitle; ktitle.lw=0; ktitle.nd=0;

repeat

submit(r) = no;

* Submit as many as maxthreads jobs, choosing from regions

* which are neither completed nor currently running.

loop(r$(not (done(r) or handle(r))),

submit(r) = yes$(card(submit)+card(handle)<maxthreads););

* Submit all the jobs which have been identified, one at a time,

* retaining a handle for each of these so we recognize it when

* it is completed:

loop(submit(rr),
rb(r) = yes$sameas(r,rr);
solve cdecalib using nlp minimizing OBJ;
handle(rr) = cdecalib.handle;);

* Update the title bar with a status report of the number of

* completed jobs, the number remaining and a count of the number

* currently being processed:

put_utility ’title’/ktitle ’CDE calibration.’
’ Finished: ’,card(done),’,’
’ remaining: ’,(card(r)-card(done)),’,’
’ running: ’,card(handle),’.’;

* Wait for an instance to complete:

display$ReadyCollect(handle) ’Waiting for next instance to collect’;
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* Go through the list of running jobs to find the one which is

* completed:

loop(rr$handlecollect(handle(rr)),

* Unload the solution (lots of assignments suppressed):

cdelog(rr,"modelstat") = cdecalib.modelstat;
...

* Issue a warning if this handle cannot be deleted:

display$handledelete(handle(rr)) ’trouble deleting handles’ ;

* Label this region job as inactive and completed:

handle(rr) = 0;
done(rr) = yes;);

* Keep going until we have completed all the jobs or we have run

* for a long time:

until (card(done)=card(r)) or timeelapsed > 300;

* Issue a warning if some jobs did not complete:

abort$(card(done)<>card(r)) ’CDECALIB jobs did not return:’, handle;

Integrating cde Demand in MPSGE

The integration of cde demand in the mpsge model is subtle. To begin with, we
need to introduce an Armington composite price for final demand. This is done
with the A(i,r) activity which converts domestic and imported goods into the
PA(i,r) commodity:

$prod:A(i,r)$(rm(r)*vcm(i,r)) s:esubdm(i)
o:PA(i,r) q:vcm(i,r)
i:P(i,r) q:vdfm(i,"c",r) p:(1+rtfd0(i,"c",r))

+ a:RA(r) t:rtfd(i,"c",r)
i:PM(i,r) q:vifm(i,"c",r) p:(1+rtfi0(i,"c",r))

+ a:RA(r) t:rtfi(i,"c",r)

The cde demand functions are represented by auxiliary variables, and they
enter the mpsge model as rationing multipliers on regional endowments. The as-
signed set cde(r) is used to indicate whether region r has a cde demand system.
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Here is the tricky business: MPSGE insists that all consumers entering the
model demand something. We therefore need to include “phantom” demand
and endowment entries which will offset one another in equilibrium. The budget
balance condition in the cde model (the constraint associated with U(r) imposes
that in equilibrium the value of expenditure for region r (RA(r)) equal to the
value of the phantom factor endowment vector.

$demand:RA(r)$(rm(r) and cde(r)) s:0

* CDE demand enters the model as a negative value,

* the value of which is determined by auxiliary variable D:

e:PA(i,r) q:(-vcm(i,r)) R:D(i,r)

* Demand blocks are required to have a demand coefficient,

* so we introduce a phantom demand coefficient and a

* corresponding endowment which exactly offsets phantom demand

* in equilibrium:

d:PF(f,r) q:evom(f,r)
e:PF(f,r) q:evom(f,r)

* Public demand and investment demand are exogenous:

e:P("g",r) q:(-vom("g",r))
e:P("i",r) q:(-vom("i",r))

* Current account balance:

e:P("i",rnum)$rm(rnum) q:vb(r)
e:PFX$rx(rnum) q:vb(r)

* Primary factor endowments:

e:PF(f,r) q:evom(f,r)

$constraint:U(r)$(cde(r)*rm(r))
sum(f, PF(f,r)*evom(f,r)) =e= RA(r);

$constraint:CC(r)$(cde(r)*rm(r))
sum(i, thetac(i,r) * U(r)**((1-subpar(i,r))*incpar(i,r)) *

(PA(i,r)/CC(r))**(1-subpar(i,r))) =e= 1;

$constraint:D(i,r)$(rm(r)*vcm(i,r))
D(i,r) * sum(j$thetac(j,r), thetac(j,r) *
U(r)**((1-subpar(j,r))*incpar(j,r)) *

(PA(j,r)/CC(r))**(1-subpar(j,r)))
=e= U(r)**((1-subpar(i,r))*incpar(i,r)) *

(PA(i,r)/CC(r))**(-subpar(i,r));

$constraint:W(r)$(cde(r)*rm(r))
sum(i, thetac(i,r) * U(r)**((1-subpar(i,r))*incpar(i,r)) *

(1/W(r))**(1-subpar(i,r))) =e= 1;
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Appendix E. Subdirectories and GAMS Programs

build/ Working directory for dataset construction.
build.gms Command script to read, filter and aggregate a set of

GTAP datasets. Default configuration: produces datasets
gtapingams.gdx, g20.gdx, g20 macro.gdx and
g20 iea.gdx for 2011. Calls code/flex2gdx.gms,
code/filter.gms, code/gtapaggr.gms and
code/cdecalib.gms.

filterchk.gms Command script to generate data for Table 6:
Filtering results. Calls code/flex2gdx.gms,
code/filter.gms. Results are written to a PivotData
sheet in filterchk.xlsx.

test.gms Command script which calls bmkchk.gms for dataset
g20 macro, mcpmge.gms for dataset g20 and
cdechk.gms for dataset g20.

bmkchk.gms Benchmark consistency is a necessary, but not a sufficient
condition that the model is properly specified. This routine
checks for the g20 macro dataset in both mge and mcp for-
mats. This routine produces a replication check for the gmr

model and all the single region soe models.

mcpmge.gms Is designed to perform a check of consistency for the mcp

and mge models at a point away from the benchmark equi-
librium. It can be used to verify that a solution computed
with mge.gms also solves mcp.gms, and that a solution
computed with mcp.gms solves mge.gms. The gams save-
point and loadpoint commands are used for this purpose.

cdechk.gms Verifies that the CDE demand system reproduces the ex-
ogenous own-price and income demand elasticities at the
benchmark point.

code/ Code repository – not a working directory.
flex2gdx.gms Routine which translates the har files from a gtap .zip

archive into gams .gdx files. The routine produces an
echoprint report of benchmark consistency of the database.

filter.gms Filter routine, based on environment parameter –nd, the
number of decimal points in the filter.
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gtap9data.gms Utility routine for read a gtapingams version 9 dataset.

gtapaggr.gms Dataset aggregation routine (call to cdecalib.gms follow-
ing aggregation must be made by user).

aggr.gms Utility routines called by gtapaggr.gms.
chktarget.gms
checkset.gms

domain.gms Standard purpose libinclude routine for extracting the
nonzero domain of a parameter, using the mysterious
”option pd 1<p 1;” syntax.

cdecalib.gms Utility routine to recalibrate cde demand following dataset
aggregation.

mcp.gms The canonical static gtapingams model in algebraic format.

mge.gms The canonical static gtapingams model in tabular mpsge

format.

gdpcalc.gms Utility routine for reporting GDP on the basis of income, fi-
nal demand or sectoral value-added, compatible with either
the mcp.gms or mge.gms models. First call declares report
parameters.

loadmdl.gms Utility routines for switching demand systems (between
Cobb-Douglas, les and cde) and model closures (gmr ver-
sus soe). The macros included here are described below.

forensics/ Produces some calculations assessing the economic conse-
quences of proportional unilateral changes in trade taxes.

run.gms This gams script which execute ssagen.gms,
ssasolve.gms and ssamerge.gms.

ssagen.gms This gams script produces ssasolve.gms and
ssamerge.gms

ssasolve.gms is a gams programs written by ssagen.gms which pro-
cesses tgrid.gms for several alternative model closures
and demand system specifications.

ssamerge.gms is a gams programs written by ssagen.gms which com-
bines model results into a format suitable for generating an
Excel pivot report.
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tgrid.gms Performs a sequence of counterfactual calculations for a
single region, with proportional scaling tariff and ex-
port subsidy rates to average values between 0 and 10%.
These counterfactual calculations are computed with Cobb-
Douglas, les and cde demand. Macro results (welfare,
model status, and global welfare) are returned in parameter
results(dsys,tlvl,*). GDP calculations are stored in
gdpresults(dsys,tlvl,gdpcat,r,gdpitem).

Macros for model configuration

Two user-callable macros provided in loadmdl.gms:

$macro loaddsys(ff,r) Loads demand system ff for region r where ff is
one of les, cd or cde and r is a region identifier, either a quoted set element
or a subset of the regions r. This function alters:

cd(r) Cobb Douglas demand system flag for model regions
les(r) LES demand system flag for model regions
cde(r) CDE demand system flag

vdfm(),vifm() Levels of subsistence and discretionary demand
vom() Output level which activate aggregate consumer demand, subsis-

tence and discretionary demand.

$macro loadrm(rr) Load regions rr(r) as endogenous elements of the cur-
rent model. If rr is a set which includes all regions in r, then a global
multiregional model is produced. If rr is singleton or a subset of regions in
r, then a small open economy closure is provided. This routine alters:

rm(r) Set of regions in the model,
rx(r) Set of regions in rest of world,

rnum(r) Set defining the numeraire region – the region in the model with the
largest consumption.

vem(i,r) Exports to ROW regions by regions in the model,
rtxs row(i,r) Average subsidy rates on exports to ROW regions.

rowpfx Current account balance for the rest of world regions.
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The user-callable macros provided in loadmdl.gms are invoked as follows in
the tgrid.gms program:

* Load regions in the model, either a global multiregional

* model containing all regions or a small open economy model

* with a single region.

$if not set mdl $set mdl gmr
$if not set rcalc $set rcalc chn

$if %mdl%==gmr loadrm(r);
$if %mdl%==soe loadrm("%rcalc%");

In the same program, a loop over functional forms is used to calculate scenario
results for three different demand systems, as shown below.

GDP reporting

gdpcalc.gms declares the following identifiers:24

set gdpcat GDP Categories /
expend Expenditure (C + G + I - (X-M)),
income Income (Factor income + taxes),
valueadded Sectoral factor earnings plus tax payments,
total Total GDP/,

gdpitem /"X-M",set.g,set.f,
revto,revtfd,revtfi,revtf,revtxs,revtms,
expend,income,valueadded,chksum/;

alias (gdpitem, gdpi);

parameter gdp(gdpcat,*,gdpitem) Real GDP accouting,
vadd(g, gdpitem, r) GDP on a value-added basis;

GDP reporting in tgrid.gms consists of an include statement at the beginning
of the program, just after having read mge.gms, in a context permitting declara-
tions:

24 These names may not be used in the calling program.
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* Read the model and calculate GDP at the benchmark point:

$include %code%mge

$include %code%gdpcalc

The GDP routine is included following scenarios solutions inside the loop over
alternative demand systems:

loop(dsys,

* Load the demand system:

loaddsys(dsys,r);

* Initialize tax instruments at benchmark values:
rtms(i,s,r) = rtms0(i,s,r);
rtxs(i,s,r) = rtxs0(i,s,r);

loop(tlvl,

* Assign tax rates for the counterfactual simulation:

rtms(i,s,rcalc)$max(rtms0(i,s,rcalc),0) =
rtms0(i,s,rcalc) * tlvl.val/averate;

rtxs(i,rcalc,s)$max(-rtxs0(i,rcalc,s),0) =
rtxs0(i,rcalc,s) * tlvl.val/averate;

* Compute the equilibrium values:

$include gtap9.gen
solve gtap9 using mcp;
abort$(gtap9.objval>1e-3) "Simulation fails: gtap9.";

* Store the GDP results for this simulation:

$include %code%gdpcalc

gdpresults(dsys,tlvl,gdpcat,r,gdpitem) = gdp(gdpcat,r,gdpitem);

...

))
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Appendix F. GAMS Code

Declarations

$title GTAP9inGAMS -- GAMS/MCP Formulation

$if not set yr $set yr 11
$if not set ds $set ds g20_macro
$include "%system.fp%gtap9data"

nonnegative
variables

*$sectors:
Y(g,r) Supply
M(i,r) Imports
YT(j) Transportation services
FT(f,r) Specific factor transformation
X(i,r) Exports to rest of world (SOE model)
A(i,r) Armington final demand quantity index (CDE model)

*$commodities:
P(g,r) Domestic output price
PA(i,r) Armington final demand price
PE(g,r) Export market
PM(j,r) Import price
PT(j) Transportation services
PF(f,r) Primary factors rent
PS(f,g,r) Sector-specific primary factors
PFX Real exchange rate (SOE model)

*$consumers:
RA(r) Representative agent
ROW Rest of world (SOE model)

*$auxiliary:
D(i,r) CDE Demand (index)
U(r) CDE utility (index)
CC(r) CDE Consumption cost index,
W(r) CDE money metric welfare;

equations
prf_y(g,r) Supply,
prf_a(i,r) Armington demand,
prf_x(i,r) Exports,
prf_m(i,r) Imports,
prf_yt(j) Transportation services,
prf_ft(f,r) Factor transformation,

mkt_p(g,r) Domestic market,
mkt_pe(g,r) Export market,
mkt_pm(j,r) Import market,
mkt_pa(i,r) Armington market,
mkt_pt(j) Transportation service market,
mkt_pf(f,r) Primary factor markets,
mkt_ps(f,j,r) Specific factor markets,
mkt_pfx Market for foreign exchange,
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inc_ra(r) Representative agent
inc_row Rest of world agent

constraint_D Defines D (CDE model)
constraint_U Defines U (CDE model)
constraint_CC Defines CC (CDE model),
constraint_W Defines W (CDE model);

Zero profit (arbitrage) conditions

Sectoral production – Y(g,r)

* Define some macros which diagnose the functional form:

$macro Leontief(sigma) (yes$(round(sigma,2)=0))
$macro CobbDouglas(sigma) (yes$(round(sigma-1,2)=0))
$macro CES(sigma) (yes$(round(sigma-1,2)<>0 and round(sigma,2)<>0))

* -------------------------------------------------------------------------------

* Profit function for production and consumption activities:

* $prod:Y(g,r)$(rm(r)*vom(g,r)) s:0 m:esub(g,r) t:etadx(g) i.tl(m):esubdm(i) va(s):esubva(g)

* o:P(g,r) q:(vom(g,r)-vxm(g,r)) a:RA(r) t:rto(g,r)

* o:PE(g,r) q:vxm(g,r) a:RA(r) t:rto(g,r)

* i:P(i,r) q:vdfm(i,g,r) p:(1+rtfd0(i,g,r)) i.tl: a:RA(r) t:rtfd(i,g,r)

* i:PM(i,r) q:vifm(i,g,r) p:(1+rtfi0(i,g,r)) i.tl: a:RA(r) t:rtfi(i,g,r)

* i:PS(sf,g,r) q:vfm(sf,g,r) p:(1+rtf0(sf,g,r)) va: a:RA(r) t:rtf(sf,g,r)

* i:PF(mf,r) q:vfm(mf,g,r) p:(1+rtf0(mf,g,r)) va: a:RA(r) t:rtf(mf,g,r)

* Benchmark value shares:

parameter
cf0(g,r) Factor cost
cm0(g,r) Material cost
cy0(g,r) Reference total cost,
theta_cf0(g,r) Value added share of cost,
theta_vfm(f,g,r) Factor share of value added,
theta_cm0(i,g,r) Armington share of material cost,
theta_vdfm(i,g,r) Domestic share of Armington composite,
theta_vxm(g,r) Export share of output,
theta_vst(j,r) Value share,
theta_vxmd(i,s,r) Value share of goods in imports,
theta_vtwr(j,i,s,r) Value share of transportation services,
theta_vim(i,s,r) Bilateral import value share
vxmt(i,s,r) Value of imports gross transport cost,
vxmd0(i,r,s) Trade - bilateral exports at market prices (dataset values),
vtwr0(j,i,r,s) Trade - margins for international transportation at world prices,
theta_evom(f,j,r) Value shares of specific factors;

vxmd0(i,r,s) = vxmd(i,r,s);
vtwr0(j,i,r,s) = vtwr(j,i,r,s);

$setlocal datetime %system.date%%system.time%
$echo * Calibration code for mcp.gms (%datetime%) >gtap9.gen
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* Save copy of the benchmark trade flows so that we can turn off

* demand as needed in the SOE model:

vxmd(i,r,s) = vxmd0(i,r,s);
vxmd(i,rx(r),rm(s)) = vxmd0(i,r,s)$vem(i,r);

vtwr(j,i,r,s) = vtwr0(j,i,r,s);
vtwr(j,i,rx(r),rm(s)) = vtwr0(j,i,r,s)$vem(i,r);

* User cost indices for factors, domestic and imported

* intermediate inputs:

$macro P_PF(f,g,r) (((PF(f,r)$mf(f)+PS(f,g,r)$sf(f))*(1+rtf(f,g,r)) \
/ (1+rtf0(f,g,r)))$theta_vfm(f,g,r) + 1$(theta_vfm(f,g,r)=0))

$macro P_D(i,g,r) ((P(i,r)*(1+rtfd(i,g,r)) \
/ (1+rtfd0(i,g,r)))$theta_vdfm(i,g,r) + 1$(not theta_vdfm(i,g,r)))

$macro P_I(i,g,r) ((PM(i,r)*(1+rtfi(i,g,r)) \
/ (1+rtfi0(i,g,r)))$(1-theta_vdfm(i,g,r)) + 1$(theta_vdfm(i,g,r)=1))

* Compensated cost functions:

$if defined f_ $abort "The CF(g,r) macro requires a uniquely defined alias for f."
alias (f,f_);

* Factor cost index:

$macro C_F(g,r) ( \
( (sum(f_$theta_vfm(f_,g,r), theta_vfm(f_,g,r)*P_PF(f_,g,r)))$Leontief(esubva(g)) + \

(prod(f_$theta_vfm(f_,g,r), P_PF(f_,g,r)**theta_vfm(f_,g,r)))$CobbDouglas(esubva(g)) + \
(sum(f_$theta_vfm(f_,g,r), theta_vfm(f_,g,r)* \

P_PF(f_,g,r)**(1-esubva(g)))**(1/(1-esubva(g))))$CES(esubva(g)))$cf0(g,r) )

* Armington cost index:

$macro C_A(i,g,r) ( \
(theta_vdfm(i,g,r)*P_D(i,g,r) + (1-theta_vdfm(i,g,r))*P_I(i,g,r))$Leontief(esubdm(i)) + \
(P_D(i,g,r)**theta_vdfm(i,g,r) * P_I(i,g,r)**(1-theta_vdfm(i,g,r)))$CobbDouglas(esubdm(i)) + \
( (theta_vdfm(i,g,r) *P_D(i,g,r)**(1-esubdm(i)) + \
(1-theta_vdfm(i,g,r))*P_I(i,g,r)**(1-esubdm(i)))**(1/(1-esubdm(i))))$CES(esubdm(i)))

$if defined i_ $abort "The C_M(g,r) macro requires a uniquely defined alias for i."
alias (i,i_);
$macro C_M(g,r) ( \
( (sum(i_$theta_cm0(i_,g,r), theta_cm0(i_,g,r) * \

C_A(i_,g,r)**(1-esub(g,r)))**(1/(1-esub(g,r))))$CES(esub(g,r)) + \
prod(i_$theta_cm0(i_,g,r), C_A(i_,g,r)**theta_cm0(i_,g,r))$CobbDouglas(esub(g,r)) + \
sum(i_$theta_cm0(i_,g,r), theta_cm0(i_,g,r) * C_A(i_,g,r))$Leontief(esub(g,r)) ) )

* Unit cost function:

$macro C_Y(g,r) (theta_cf0(g,r)*C_F(g,r) + (1-theta_cf0(g,r))*C_M(g,r))

* Unit revenue function:

$macro R_Y(g,r) ( P(g,r)$(not vxm(g,r)) + \
(((1-theta_vxm(g,r))* P(g,r)**(1+etadx(g)) + \

theta_vxm(g,r) * PE(g,r)**(1+etadx(g)))**(1/(1+etadx(g))))$vxm(g,r) )
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* Demand functions:

$macro DDY(i,g,r) ((vdfm(i,g,r)*Y(g,r)*(C_A(i,g,r)/P_D(i,g,r))**esubdm(i) * \
(C_M(g,r)/C_A(i,g,r))**esub(g,r))$vdfm(i,g,r))

$macro DDA(i,r) ((vdfm(i,"C",r)*A(i,r)*(C_A(i,"C",r)/P_D(i,"C",r))**esubdm(i) * \
(C_M("C",r)/C_A(i,"C",r))**esub("c",r))$vdfm(i,"c",r))

$macro DIY(i,g,r) ((vifm(i,g,r) * Y(g,r) * (C_A(i,g,r) /P_I(i,g,r) )**esubdm(i) * \
(C_M(g,r)/C_A(i,g,r))**esub(g,r))$vifm(i,g,r))

$macro DIA(i,r) ((vifm(i,"c",r) * A(i,r) * \

(C_A(i,"C",r)/P_I(i,"C",r))**esubdm(i))$(vifm(i,"C",r)*vcm(i,r)))

$macro DDFM(i,g,r) (DDY(i,g,r)$vom(g,r) + DDA(i,r)$(sameas(g,"c") and vcm(i,r)))

$macro DIFM(i,g,r) (DIY(i,g,r)$vom(g,r) + DIA(i,r)$(sameas(g,"c") and vcm(i,r)))

$macro DFM(f,g,r) (vfm(f,g,r) * Y(g,r) * (C_F(g,r)/P_PF(f,g,r))**esubva(g))$vfm(f,g,r)

$macro S_D(g,r) ((1$(not vxm(g,r)) + ((P(g,r) /R_Y(g,r))**etadx(g))$vxm(g,r)) * \
(vom(g,r)-vxm(g,r)) * Y(g,r))

$macro S_E(g,r) (vxm(g,r)*Y(g,r)*(PE(g,r)/R_Y(g,r))**etadx(g))

* Associated tax revenue flows:

$macro REV_TO(g,r) (rto(g,r)*R_Y(g,r)*vom(g,r)*Y(g,r))

$macro REV_TFD(i,g,r) ((rtfd(i,g,r) * P(i,r) * DDFM(i,g,r))$(rm(r)*rtfd(i,g,r)*vdfm(i,g,r)))

$macro REV_TFI(i,g,r) ((rtfi(i,g,r) * PM(i,r) * DIFM(i,g,r))$(rm(r)*rtfi(i,g,r)*vifm(i,g,r)))

$macro REV_TF(f,g,r) ((rtf(f,g,r) * DFM(f,g,r) * ((PS(f,g,r))$sf(f) + \
(PF(f,r))$mf(f)))$(rm(r)*vom(g,r)*rtf(f,g,r)*vfm(f,g,r)))

prf_y(g,r)$(rm(r)*vom(g,r)).. cy0(g,r)*C_Y(g,r) =e= vom(g,r)*(1-rto(g,r))*R_Y(g,r);

International transportation services – YT(j)

* $prod:YT(j)$vtw(j) s:1

* o:PT(j) q:vtw(j)

* i:PE(j,r)$(rm(r)*vxm(j,r)) q:vst(j,r)

* i:P(j,r)$(rm(r)*(not vxm(j,r))) q:vst(j,r)

* i:PFX q:(sum(rx(r),vst(j,r)))

$macro PYT(j,r) (PX(j,r)$rm(r) + (PFX)$rx(r))

prf_yt(j)$vtw(j).. sum(r,vst(j,r)) *
prod(r, PYT(j,r)**theta_vst(j,r)) =e= vtw(j)*PT(j);

* Demand Function:

$macro DST(j,r) ((vst(j,r)*YT(j)*PT(j)/PYT(j,r))$vst(j,r))
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Aggregate imports – M(i,r)

* $prod:M(i,r)$(rm(r)*vim(i,r)) s:esubm(i) s.tl:0

* o:PM(i,r) q:vim(i,r)

* i:PE(i,s)$(rm(s)*vxm(i,s)) q:vxmd(i,s,r) p:pvxmd(i,s,r) s.tl:

* + a:RA(s) t:(-rtxs(i,s,r)) a:RA(r) t:(rtms(i,s,r)*(1-rtxs(i,s,r)))

* i:P(i,s)$(rm(s)*(not vxm(i,s))) q:vxmd(i,s,r) p:pvxmd(i,s,r) s.tl:

* + a:RA(s) t:(-rtxs(i,s,r)) a:RA(r) t:(rtms(i,s,r)*(1-rtxs(i,s,r)))

* i:PT(j)#(s) q:vtwr(j,i,s,r) p:pvtwr(i,s,r) s.tl:

* + a:RA(r) t:rtms(i,s,r)

* i:PE(i,rx)$vem(i,rx) q:vxmd(i,rx,r) p:pvxmd(i,rx,r) rx.tl:

* + a:ROW t:(-rtxs(i,rx,r)) a:RA(r) t:(rtms(i,rx,r)*(1-rtxs(i,rx,r)))

* User cost indices:

$macro P_M(i,s,r) ((PX(i,s) * \
(1-rtxs(i,s,r))*(1+rtms(i,s,r))/pvxmd(i,s,r))$vxmd(i,s,r) + 1$(vxmd(i,s,r)=0))

$macro P_T(j,i,s,r) ((PT(j)*(1+rtms(i,s,r))/pvtwr(i,s,r))$vtwr(j,i,s,r)+1$(vtwr(j,i,s,r)=0))

* Price index of bilateral imports (Leontief cost function):

$if defined j1 $abort "The PT_M(i,s,r) macro requires a uniquely defined alias for j."
alias (j,j1);
$macro PT_M(i,s,r) (P_M(i,s,r)*theta_vxmd(i,s,r) + sum(j1, P_T(j1,i,s,r)*theta_vtwr(j1,i,s,r)))

* Unit cost function for imports (CES):

$if defined s_ $abort "The CIM(i,r) macro requires a uniquely defined alias for s."
alias (s,s_);
$macro CIM(i,r) ( \

sum(s_, theta_vim(i,s_,r) * PT_M(i,s_,r) )$Leontief(esubm(i)) + \
prod(s_, PT_M(i,s_,r)**theta_vim(i,s_,r) )$CobbDouglas(esubm(i)) + \
(sum(s_, theta_vim(i,s_,r) * PT_M(i,s_,r)**(1-esubm(i)))**(1/(1-esubm(i))))$CES(esubm(i)) )

prf_m(i,rm(r))$vim(i,r).. CIM(i,r)*vim(i,r) =e= PM(i,r)*vim(i,r);

* Demand function:

$macro DXMD(i,s,r) ((vxmd(i,s,r) * M(i,r) * (PM(i,r)/PT_M(i,s,r))**esubm(i))$vxmd(i,s,r))
$macro DTWR(j,i,s,r) ((vtwr(j,i,s,r) * M(i,r) * (PM(i,r)/PT_M(i,s,r))**esubm(i))$vtwr(j,i,s,r))

* Associated tax revenue:

alias (rm,sm);

$macro XMD(i,s,r) ((DXMD(i,s,r)/vxmd(i,s,r))$(rm(r)*vim(i,r)*vxmd(i,s,r)) + \
X(i,s)$(rm(s) and rx(r) and vxmd(i,s,r)))

$macro REV_TXS(i,s,r) ((XMD(i,s,r)*vxmd(i,s,r)*PX(i,s)*rtxs(i,s,r))$(rm(s) and vxmd(i,s,r)))

$if defined j2 $abort "The REVTMS(r) macro requires a uniquely defined alias for j."
alias (j,j2);

$macro REV_TMS(i,s,r) ((XMD(i,s,r)*rtms(i,s,r)* \
((1-rtxs(i,s,r))*vxmd(i,s,r)*PX(i,s) + \
sum(j$vtwr(j,i,s,r), PT(j)*vtwr(j,i,s,r))))$(rm(r)*vxmd(i,s,r)*rtms(i,s,r)))
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Sector-specific factor transformation – FT(f,r)

* $prod:FT(sf,r)$evom(sf,r) t:etrae(sf)

* o:PS(sf,j,r) q:vfm(sf,j,r)

* i:PF(sf,r) q:evom(sf,r)

$if defined j3 $abort "The PVFM(sf,r) macro requires a uniquely defined alias for j."
alias (j,j3);
$macro PVFM(sf,r) (sum(j3,theta_evom(sf,j3,r)*PS(sf,j3,r)**(1+etrae(sf)))**(1/(1+etrae(sf))))

prf_ft(sf,rm(r))$evom(sf,r).. evom(sf,r)*PF(sf,r) =e= evom(sf,r)*PVFM(sf,r);

Market clearance

These equations do not appear explicitly in the MPSGE model, as they are gen-
erated automatically on the basis of the production function information provided
above.

Domestic production and final demand – PY(g,r)

alias (g,gg);

mkt_p(g,rm(r))$(rm(r)*(vom(g,r)-vxm(g,r)))..
S_D(g,r) =e= (RA(r)/P(g,r))$(vom(g,r) and cd(g)) +

vom(g,r)$(sameas(g,"G") or sameas(g,"I") or sameas(g,"sd")) +
sum(i$sameas(i,g),
sum(gg,DDFM(i,gg,r)) +

(X(i,r)*vem(i,r)+sum(sm(s),DXMD(i,r,s)) + DST(i,r))$(not vxm(i,r)));

Export supply and demand – PE(i,r)

mkt_pe(i,r)$(rm(r)*vxm(i,r) or rx(r)*vem(i,r))..
S_E(i,r)$rm(r) + (X(i,r)*vem(i,r))$rx(r) =e=

sum(sm(s),DXMD(i,r,s)) + (X(i,r)*vem(i,r) + DST(i,r))$rm(r);

Composite imports – PM(i,r)

mkt_pm(i,rm(r))$vim(i,r).. M(i,r) * vim(i,r) =e= sum(g, DIFM(i,g,r));
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Transport services – PT(j)

mkt_pt(j)$vtw(j).. YT(j) * vtw(j) =e= sum((i,s,r)$vtwr(j,i,s,r),
DTWR(j,i,s,r)$rm(r) + vtwr(j,i,s,r)$rx(r));

Primary factors – PF(f,r)

mkt_pf(f,rm(r))$evom(f,r)..
evom(f,r) =e= sum(j, DFM(f,j,r))$mf(f) + (evom(f,r)*FT(f,r))$sf(f);

Specific factors – PS(f,j,r)

mkt_ps(sf,j,rm(r))$vfm(sf,j,r)..
vfm(sf,j,r) * (PS(sf,j,r)/PF(sf,r))**etrae(sf) * FT(sf,r) =e= DFM(sf,j,r);

Regional income balance – RA(r)

* $demand:RA(r)$rm(r) s:0

* d:P("c",r) q:vom("c",r)

* e:P("g",r) q:(-vom("g",r))

* e:P("i",r) q:(-vom("i",r))

* e:P("i",rnum)$rm(rnum) q:vb(r)

* e:PFX$rx(rnum) q:vb(r)

* e:PF(f,r) q:evom(f,r)

* d:PF(f,r)$cde(r) q:evom(f,r)

* e:PF(f,r)$cde(r) q:evom(f,r)

* e:PA(i,r) q:(-vcm(i,r)) R:D(i,r)

inc_ra(rm(r))$(RA.LO(r) < RA.UP(r))..
RA(r) =e= ( sum(f$evom(f,r), PF(f,r)*evom(f,r))

- sum(i$vcm(i,r), PA(i,r)*vcm(i,r)*D(i,r)) )$cde(r)
+ vb(r)*((PFX)$rx(rnum)+P("i",rnum)$rm(rnum))
- P("g",r)*vom("g",r)
- P("i",r)*vom("i",r)
- (P("sd",r)*vom("sd",r))$vom("sd",r)
+ sum(f$evom(f,r), PF(f,r)*evom(f,r))
+ sum(g,REV_TO(g,r))
+ sum((i,g),REV_TFD(i,g,r))
+ sum((i,g),REV_TFI(i,g,r))
+ sum((f,g),REV_TF(f,g,r))
- sum((i,s),REV_TXS(i,r,s))
+ sum((i,s),REV_TMS(i,s,r));

Model Declaration
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* Two flavors: The MCP declaration declares equations

* and associates these with variables. The CNS declaration simply declares

* equations:

model gtap9 /
prf_y.Y,prf_x.X,prf_a.A,prf_m.M,prf_yt.YT,prf_ft.FT,
mkt_p.P,mkt_pe.PE,mkt_pa.PA,mkt_pm.PM,mkt_pt.PT,mkt_pf.PF,mkt_ps.PS,mkt_pfx.PFX,
constraint_D.D, constraint_U.U, constraint_CC.CC, constraint_W.W,
inc_ra.RA, inc_row.ROW/;

model gtap9cns /
prf_y,prf_x,prf_a,prf_m,prf_yt,prf_ft,
mkt_p,mkt_pe,mkt_pa,mkt_pm,mkt_pt,mkt_pf,mkt_ps,mkt_pfx,
constraint_D, constraint_U, constraint_CC, constraint_W,
inc_ra, inc_row/;

* Assign default values:

Y.L(g,r) = 1;
A.L(i,r) = 1;
X.L(i,r) = 1;
M.L(i,r) = 1;
YT.L(j) = 1;
FT.L(sf,r) = 1;
P.L(g,r) = 1;
PA.L(i,r) = 1;
PM.L(j,r) = 1;
PM.FX(j,r)$(not vim(j,r)) = 0;
PT.L(j) = 1;
PF.L(f,r) = 1;
PS.L(sf,j,r) = 1;
PFX.L = 1;
X.L(i,r)$vem(i,r) = 1;
PE.L(i,r)$vxm(i,r) = 1;

* Assign some lower bounds to avoid bad function calls:

P.LO(g,r)$vom(g,r) = 0.001;
PM.LO(j,r)$vim(j,r) = 0.001;
PT.LO(j) = 0.001;
PF.LO(f,r)$evom(f,r) = 0.001;
PS.LO(sf,g,r)$vfm(sf,g,r) = 0.001;

Calibration algebra executed before model solution:

$onechov >>gtap9.gen

cf0(g,r) = sum(f, vfm(f,g,r)*(1+rtf0(f,g,r)));
cm0(g,r) = sum(i, vdfm(i,g,r)*(1+rtfd0(i,g,r)) + vifm(i,g,r)*(1+rtfi0(i,g,r)));
cy0(g,r) = cf0(g,r) + cm0(g,r);

theta_cf0(g,r)$vom(g,r) = cf0(g,r) / cy0(g,r);
theta_vfm(f,g,r)$cf0(g,r) = vfm(f,g,r)*(1+rtf0(f,g,r)) / cf0(g,r);
theta_cm0(i,g,r)$cm0(g,r) =

(vdfm(i,g,r)*(1+rtfd0(i,g,r)) + vifm(i,g,r)*(1+rtfi0(i,g,r))) / cm0(g,r);
theta_vdfm(i,g,r)$vdfm(i,g,r) = vdfm(i,g,r)*(1+rtfd0(i,g,r)) /

(vdfm(i,g,r)*(1+rtfd0(i,g,r)) + vifm(i,g,r)*(1+rtfi0(i,g,r)));
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theta_vxm(g,r)$vom(g,r) = vxm(g,r)/vom(g,r);
theta_vst(j,r)$vtw(j) = vst(j,r)/sum(r.local,vst(j,r));
vxmt(i,s,r)$vxmd(i,s,r) = vxmd(i,s,r)*pvxmd(i,s,r) + sum(j,vtwr(j,i,s,r)*pvtwr(i,s,r));

vxmt(i,s,r)$(rx(s) and rm(r) and (not vem(i,s))) = 0;

theta_vxmd(i,s,r)= (vxmd(i,s,r)*pvxmd(i,s,r) / vxmt(i,s,r))$vxmt(i,s,r);
theta_vtwr(j,i,s,r) = (vtwr(j,i,s,r)*pvtwr(i,s,r) / vxmt(i,s,r))$vxmt(i,s,r);
theta_vim(i,s,r)$vxmt(i,s,r) = vxmt(i,s,r)/vim(i,r);
theta_evom(sf,j,r)$evom(sf,r) = vfm(sf,j,r)/evom(sf,r);

RA.L(r) = sum(cd,vom(cd,r))$(not cde(r)) + sum(f,evom(f,r))$cde(r);

ROW.L = rowpfx - sum(rm,vb(rm))$rm(rnum) - sum((j,i,s,rx), vtwr(j,i,s,rx))
- sum((i,rx,rm), rtxs(i,rx,rm)*vxmd(i,rx,rm));

RA.LO(r) = 0; RA.UP(r) = +INF; RA.FX(rnum) = RA.L(rnum);
$offecho

Macros to Move Between Closures and Demand Systems

$macro loaddsys(ff,r) \
if (sameas(ff,"les"), loadles(r); ); \
if (sameas(ff,"cd"), loadcd(r); ); \
if (sameas(ff,"cde"), loadcde(r); );

$macro loadles(r) \
cde(r) = no; \
cd(r) = no; \
vom("c",r) = 0; \
les(r) = yes; \
vdfm(i,"sd",r) = vdfm(i,"c",r)*(1-betales(r)*eta(i,r)); \
vifm(i,"sd",r) = vifm(i,"c",r)*(1-betales(r)*eta(i,r)); \
vdfm(i,"dd",r) = vdfm(i,"c",r)*betales(r)*eta(i,r); \
vifm(i,"dd",r) = vifm(i,"c",r)*betales(r)*eta(i,r); \
vom(lesd,r) = sum(i,vdfm(i,lesd,r)*(1+rtfd(i,lesd,r)) + \

vifm(i,lesd,r)*(1+rtfi(i,lesd,r)));
$macro loadcde(r) \

les(r) = no; \
cd(r) = no; \
cde(r) = yes; \
vom("c",r) = 0; \
vom(lesd,les(r)) = 0; \
vdfm(i,lesd,r) = 0; \
vifm(i,lesd,r) = 0; \
W.L(r) = 1; \
U.L(r) = 1; \
D.L(i,r)$vcm(i,r) = 1; \
CC.L(r) = 1;

$macro loadcd(r) \
les(r) = no; \
cd(r) = yes; \
cde(r) = no; \
vom(lesd,les(r)) = 0; \
vdfm(i,lesd,r) = 0; \
vifm(i,lesd,r) = 0; \
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vom("c",r) = sum(i,vdfm(i,"c",r)*(1+rtfd(i,"c",r)) + vifm(i,"c",r)*(1+rtfi(i,"c",r)));

$if defined ii_ $abort "The loadrm(r) macro requires a uniquely defined alias for i."
$if defined ss_ $abort "The loadrm(r) macro requires a uniquely defined alias for s."

alias (r,r_,rr), (j,j_),(i,ii_), (s,ss_), (f,f_);

$macro loadrm(r) \
rm(r_) = no; \
rm(r) = yes; \
loop(r_$(rm(r_) and (vom("c",r_)+vom("sd",r_)+vom("dd",r_)= \
smax(rm,vom("c",rm)+vom("sd",rm)+vom("dd",rm)))), rnum(r_) = yes;); \

rx(r_) = (not rm(r_)); \
vem(ii_,r_) = sum(rx,vxmd(ii_,r_,rx))$rm(r_) + sum(rm,vxmd(ii_,r_,rm))$rx(r_); \
vem(ii_,r_)$(not round(vem(ii_,r_),5)) = 0; \
rtxs_row(ii_,r_) = (sum(rx,vxmd(ii_,r_,rx)* \

rtxs(ii_,r_,rx))/vem(ii_,r_))$(rm(r_) and vem(ii_,r_));\
rowpfx = sum(rx, vom("c",rx)+vom("sd",rx)+vom("dd",rx)+ \

sum(ii_,vcm(ii_,rx))+sum((j_,ii_,ss_),vtwr(j_,ii_,ss_,rx))) + sum(rm,vb(rm));\
pem0(ii_,r_) = (1-rtxs_row(ii_,r_))$rm(r_);

GDP Reporting Code

$stitle GAMS Code for GDP Reporting from the MGE Model

$ifthen.undefined not defined gdpcat

set gdpcat GDP Categories /
expend Expenditure (C + G + I - (X-M)),
income Income (Factor income + taxes),
valueadded Sectoral factor earnings plus tax payments,
total Total GDP/,

gdpitem /"X-M",set.g,set.f,
revto,revtfd,revtfi,revtf,revtxs,revtms,
expend,income,valueadded,chksum/;

alias (gdpitem, gdpi);

parameter gdp(gdpcat,*,gdpitem) Real GDP accouting
vadd(g, gdpitem, r) GDP on a value-added basis;

$endif.undefined

$ondotl
loop(rm(r),

gdp("expend",r,"C") = RA(r)/pnum(r)
+ ( sum(i$vcm(i,r), PA(i,r)*vcm(i,r)*D(i,r))/pnum(r)

- sum(f_$evom(f_,r), PF(f_,r)*evom(f_,r)) /pnum(r) )$cde(r)
+ (P("sd",r)*vom("sd",r)/pnum(r) )$vom("sd",r);

gdp("expend",r,"X-M") = -vb(r)*(PFX$rx(rnum)+P("i",rnum)$rm(rnum))/pnum(r);
gdp("expend",r,"g") = P("g",r)*vom("g",r)/pnum(r) ;
gdp("expend",r,"i") = P("i",r)*vom("i",r)/pnum(r) ;

vadd(i,gdpitem(f),r) = DFM(f,i,r)*(PF.L(f,r)*mf(f)+PS.L(f,i,r)$sf(f))/pnum(r);
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vadd(g,"revto",r) = REV_TO(g,r)/pnum(r);
vadd(g,"revtfd",r) = sum(i,REV_TFD(i,g,r))/pnum(r);
vadd(g,"revtfi",r) = sum(i,REV_TFI(i,g,r))/pnum(r);
vadd(g,"revtf",r) = sum(f,REV_TF(f,g,r))/pnum(r);
vadd(i,"revtxs",r) = -sum(s,REV_TXS(i,r,s))/pnum(r);
vadd(i,"revtms",r) = sum(s, REV_TMS(i,s,r))/pnum(r);

gdp("valueadded",r,gdpitem(g)) = sum(gdpi,vadd(g,gdpi,r));

gdp("income",r,gdpitem(f)) = PF(f,r)*evom(f,r)/pnum(r);
gdp("income",r,"revto") = sum(g,REV_TO(g,r))/pnum(r);
gdp("income",r,"revtfd") = sum((i,g), REV_TFD(i,g,r))/pnum(r);
gdp("income",r,"revtfi") = sum((i,g), REV_TFI(i,g,r))/pnum(r);
gdp("income",r,"revtf") = sum((f,g), REV_TF(f,g,r))/pnum(r);
gdp("income",r,"revtxs") = -sum((i,s), REV_TXS(i,r,s))/pnum(r);
gdp("income",r,"revtms") = sum((i,s), REV_TMS(i,s,r))/pnum(r);

gdp("total",r,"valueadded") = sum((g,gdpitem),vadd(g,gdpitem,r));

gdp("total",r,"expend") =
gdp("expend",r,"c")
+ gdp("expend",r,"i")
+ gdp("expend",r,"g")
+ gdp("expend",r,"x-m");

gdp("total",r,"income") =
sum(gdpitem(f), gdp("income",r,gdpitem))
+ gdp("income",r,"revto")
+ gdp("income",r,"revtfd")
+ gdp("income",r,"revtfi")
+ gdp("income",r,"revtf")
+ gdp("income",r,"revtxs")
+ gdp("income",r,"revtms");

gdp("total",r,"chksum") = abs(gdp("total",r,"expend") - gdp("total",r,"income")) +
abs(gdp("total",r,"expend") - gdp("total",r,"valueadded")) ;

);
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GAMS/MPSGE Version

$title GTAP9inGAMS -- GAMS/MPSGE Formulation

$if not set yr $set yr 11
$if not set ds $set ds g20
$include "%system.fp%gtap9data"

$ontext
$model:gtap9

$sectors:
Y(g,r)$(rm(r)*vom(g,r)) ! Supply
M(i,r)$(rm(r)*vim(i,r)) ! Imports
YT(j)$vtw(j) ! Transportation services
FT(f,r)$(rm(r)*sf(f)*evom(f,r)) ! Specific factor transformation
A(i,r)$(rm(r)*cde(r)*vcm(i,r)) ! Armington final demand quantity index (CDE model)
X(i,r)$vem(i,r) ! Exports to or from rest of world (SOE model)

$commodities:
P(g,r)$(rm(r)*(vom(g,r)-vxm(g,r))) ! Domestic output price
PE(g,r)$(rx(r)*vem(g,r)+rm(r)*vxm(g,r)) ! Export market
PM(j,r)$(rm(r)*vim(j,r)) ! Import price
PT(j)$vtw(j) ! Transportation services
PF(f,r)$(rm(r)*evom(f,r)) ! Primary factors rent
PS(f,g,r)$(rm(r)*sf(f)*vfm(f,g,r)) ! Sector-specific primary factors
PFX$card(rx) ! Real exchange rate (SOE model)
PA(i,r)$(rm(r)*cde(r)*vcm(i,r)) ! Armington final demand price

$consumers:
RA(r)$rm(r) ! Representative agent
ROW$card(rx) ! Rest of world (SOE model)

$auxiliary:
D(i,r)$(rm(r)*vcm(i,r)) ! Demand (index)
U(r)$(rm(r)*cde(r)) ! Utility (index)
CC(r)$(rm(r)*cde(r)) ! Consumption cost index
W(r)$(rm(r)*cde(r)) ! Per capita welfare (money metric index);

$prod:Y(g,r)$(rm(r)*vom(g,r)) s:0 t:etadx(g) m:esub(g,r) va:esubva(g) i.tl(m):esubdm(i)
o:P(g,r) q:(vom(g,r)-vxm(g,r)) a:RA(r) t:rto(g,r) p:(1-rto(g,r))
o:PE(g,r) q:vxm(g,r) a:RA(r) t:rto(g,r) p:(1-rto(g,r))
i:P(i,r) q:vdfm(i,g,r) p:(1+rtfd0(i,g,r)) i.tl: a:RA(r) t:rtfd(i,g,r)
i:PM(i,r) q:vifm(i,g,r) p:(1+rtfi0(i,g,r)) i.tl: a:RA(r) t:rtfi(i,g,r)
i:PS(sf,g,r) q:vfm(sf,g,r) p:(1+rtf0(sf,g,r)) va: a:RA(r) t:rtf(sf,g,r)
i:PF(mf,r) q:vfm(mf,g,r) p:(1+rtf0(mf,g,r)) va: a:RA(r) t:rtf(mf,g,r)

$prod:YT(j)$vtw(j) s:1
o:PT(j) q:vtw(j)
i:PE(j,r)$(rm(r)*vxm(j,r)) q:vst(j,r)
i:P(j,r)$(rm(r)*(not vxm(j,r))) q:vst(j,r)
i:PFX q:(sum(rx,vst(j,rx)))

$prod:M(i,r)$(rm(r)*vim(i,r)) s:esubm(i) s.tl:0
o:PM(i,r) q:vim(i,r)
i:PE(i,rm)$vxm(i,rm) q:vxmd(i,rm,r) p:pvxmd(i,rm,r) rm.tl:

+ a:RA(rm) t:(-rtxs(i,rm,r)) a:RA(r) t:(rtms(i,rm,r)*(1-rtxs(i,rm,r)))
i:P(i,rm)$(not vxm(i,rm)) q:vxmd(i,rm,r) p:pvxmd(i,rm,r) rm.tl:

+ a:RA(rm) t:(-rtxs(i,rm,r)) a:RA(r) t:(rtms(i,rm,r)*(1-rtxs(i,rm,r)))
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i:PT(j)#(s) q:vtwr(j,i,s,r) p:pvtwr(i,s,r) s.tl: a:RA(r) t:rtms(i,s,r)
i:PE(i,rx)$vem(i,rx) q:vxmd(i,rx,r) p:pvxmd(i,rx,r) rx.tl:

+ a:ROW t:(-rtxs(i,rx,r)) a:RA(r) t:(rtms(i,rx,r)*(1-rtxs(i,rx,r)))

$prod:FT(sf,r)$(rm(r)*evom(sf,r)) t:etrae(sf)
o:PS(sf,j,r) q:vfm(sf,j,r)
i:PF(sf,r) q:evom(sf,r)

* Cobb-Douglas (or CES) demand:

$demand:RA(r)$(rm(r) and cd(r)) s:0
d:P("c",r) q:vom("c",r)

e:P("g",r) q:(-vom("g",r))
e:P("i",r) q:(-vom("i",r))
e:P("i",rnum)$rm(rnum) q:vb(r)
e:PFX$rx(rnum) q:vb(r)
e:PF(f,r) q:evom(f,r)

* Linear expenditure system:

$demand:RA(r)$(rm(r) and les(r)) s:0
d:P("dd",r) q:vom("dd",r)
e:P("sd",r) q:(-vom("sd",r))

e:P("g",r) q:(-vom("g",r))
e:P("i",r) q:(-vom("i",r))
e:P("i",rnum)$rm(rnum) q:vb(r)
e:PFX$rx(rnum) q:vb(r)
e:PF(f,r) q:evom(f,r)

* CDE demand:

$demand:RA(r)$(rm(r) and cde(r)) s:0
d:PF(f,r) q:evom(f,r)
e:PF(f,r) q:evom(f,r)
e:PA(i,r) q:(-vcm(i,r)) R:D(i,r)

e:P("g",r) q:(-vom("g",r))
e:P("i",r) q:(-vom("i",r))
e:P("i",rnum)$rm(rnum) q:vb(r)
e:PFX$rx(rnum) q:vb(r)
e:PF(f,r) q:evom(f,r)

* -------------------------------------------------------------------

* Additional code for the SOE closure:

$prod:X(i,r)$(rm(r)*vem(i,r))
o:PFX q:(pem0(i,r)*vem(i,r))
i:P(i,r)$(not vxm(i,r)) q:vem(i,r) a:RA(r) t:(-rtxs_row(i,r))
i:PE(i,r)$vxm(i,r) q:vem(i,r) a:RA(r) t:(-rtxs_row(i,r))

$prod:X(i,r)$(rx(r)*vem(i,r))
o:PE(i,r) q:vem(i,r)
i:PFX q:vem(i,r)

$demand:ROW$card(rx)
e:PFX q:rowpfx
e:P("i",rnum)$rm(rnum) q:(-sum(rm,vb(rm)))
e:PT(j) q:(-sum((i,s,rx), vtwr(j,i,s,rx)))
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d:PFX

$prod:A(i,r)$(rm(r)*cde(r)*vcm(i,r)) s:esubdm(i)
o:PA(i,r) q:vcm(i,r)
i:P(i,r) q:vdfm(i,"c",r) p:(1+rtfd0(i,"c",r)) a:RA(r) t:rtfd(i,"c",r)
i:PM(i,r) q:vifm(i,"c",r) p:(1+rtfi0(i,"c",r)) a:RA(r) t:rtfi(i,"c",r)

$constraint:D(i,r)$(rm(r)*vcm(i,r))
D(i,r) * sum(j$thetac(j,r), thetac(j,r) *

U(r)**((1-subpar(j,r))*incpar(j,r)) *
(PA(j,r)/CC(r))**(1-subpar(j,r)))

=e= U(r)**((1-subpar(i,r))*incpar(i,r)) *
(PA(i,r)/CC(r))**(-subpar(i,r));

$constraint:U(r)$(cde(r)*rm(r))
sum(f, PF(f,r)*evom(f,r)) =e= RA(r);

$constraint:CC(r)$(cde(r)*rm(r))
sum(i, thetac(i,r) * U(r)**((1-subpar(i,r))*incpar(i,r)) *

(PA(i,r)/CC(r))**(1-subpar(i,r))) =e= 1;

$constraint:W(r)$(cde(r)*rm(r))
sum(i, thetac(i,r) * U(r)**((1-subpar(i,r))*incpar(i,r)) *

(1/W(r))**(1-subpar(i,r))) =e= 1;

$report:
v:V_VST(i,r)$(vst(i,r) and rm(r) and (not vxm(i,r))) i:P(i,r) prod:YT(i)
v:V_VST(i,r)$(vst(i,r) and rm(r) and vxm(i,r)) i:PE(i,r) prod:YT(i)
v:V_VDM(g,r)$(rm(r)*(vom(g,r)-vxm(g,r))) o:P(g,r) prod:Y(g,r)
v:V_XMD(i,s,r)$(vxmd(i,s,r)*rm(s)*vxm(i,s)) i:PE(i,s) prod:M(i,r)
v:V_XMD(i,s,r)$(vxmd(i,s,r)*rx(s)) i:PE(i,s) prod:M(i,r)
v:V_VXM(g,r)$(rm(r)*vom(g,r)*vxm(g,r)) o:PE(g,r) prod:Y(g,r)
v:V_DFM(i,g,r)$(rm(r)*vom(g,r)*vdfm(i,g,r)) i:P(i,r) prod:Y(g,r)
v:V_IFM(i,g,r)$(rm(r)*vom(g,r)*vifm(i,g,r)) i:PM(i,r) prod:Y(g,r)
v:V_FM(f,g,r)$(sf(f)*rm(r)*vom(g,r)*vfm(f,g,r)) i:PS(f,g,r) prod:Y(g,r)
v:V_FM(f,g,r)$(mf(f)*rm(r)*vom(g,r)*vfm(f,g,r)) i:PF(f,r) prod:Y(g,r)
v:V_XMD(i,s,r)$(vxmd(i,s,r)*rm(s)*(not vxm(i,s))) i:P(i,s) prod:M(i,r)
v:V_VDA(i,r)$(RM(R)*vcm(i,r)*vdfm(i,"c",r)) i:P(i,r) PROD:A(i,r)
v:V_VIA(i,r)$(RM(R)*vcm(i,r)*vifm(i,"c",r)) i:PM(i,r) PROD:A(i,r)

$offtext
$sysinclude mpsgeset gtap9
alias (i,i_,j_), (f,f_);

$macro pnum(r) (sum(i_, P.L(i_,r)*vdfm(i_,"c",r)+PM.L(i_,r)*vifm(i_,"c",r)) / \
sum(i_,vdfm(i_,"c",r)+vifm(i_,"c",r)))

$macro DFM(f,g,r) (V_FM.L(f,g,r)$(rm(r)*vom(g,r)*vfm(f,g,r)))
$macro DDFM(i,g,r) (V_DFM.L(i,g,r) + V_VDA.L(i,r)$(vcm(i,r) and sameas(g,"c")))
$macro DIFM(i,g,r) (V_IFM.L(i,g,r) + V_VIA.L(i,r)$(vcm(i,r) and sameas(g,"c")))
$macro REV_TO(g,r) ((rto(g,r)*((P.L(g,r)*V_VDM.L(g,r))$(vom(g,r)-vxm(g,r)) + \

(PE.L(g,r)*v_vxm.L(g,r))$vxm(g,r)))$(rm(r)*vom(g,r)))
$macro REV_TFD(i,g,r) (rtfd(i,g,r) * P.L(i,r) * DDFM(i,g,r))
$macro REV_TFI(i,g,r) (rtfi(i,g,r) * PM.L(i,r) * DIFM(i,g,r))
$macro REV_TF(f,g,r) ((rtf(f,g,r) * v_fm.L(f,g,r) * \

((PS.L(f,g,r))$sf(f)+(PF.L(f,r))$mf(f)))$(rm(r)*vom(g,r)*vfm(f,g,r)))
$macro XMD(i,s,r) ((V_XMD.L(i,s,r)/vxmd(i,s,r))$(rm(r)*vim(i,r)*vxmd(i,s,r)) + \

X.L(i,s)$(rm(s) and rx(r) and vxmd(i,s,r)))
$macro PX(i,r) ((P.L(i,r)$(not vxm(i,r)) + PE.L(i,r)$vxm(i,r))$rm(r) + PE.L(i,r)$rx(r))
$macro REV_TXS(i,s,r) ((XMD(i,s,r)*rtxs(i,s,r)*vxmd(i,s,r) * \
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PX(i,s))$(rm(s)*vxmd(i,s,r)*rtxs(i,s,r)))
$macro REV_TMS(i,s,r) ((XMD(i,s,r)*rtms(i,s,r)*(PX(i,s)*(1-rtxs(i,s,r))*vxmd(i,s,r) + \

sum(j_$vtwr(j_,i,s,r), \
PT.L(j_)*vtwr(j_,i,s,r))))$(rm(r)*vxmd(i,s,r)*rtms(i,s,r)))

gtap9.workspace = 1024;
gtap9.iterlim = 0;
$include gtap9.gen
solve gtap9 using mcp;

parameter maxdev /1e-3/;
abort$(gtap9.objval > maxdev) "GTAP9 replication fails.", gtap9.objval;
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