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Climate change damage (or, more correctly, impact) functions relate variations in 

temperature (or other climate variables) to economic impacts in various 

dimensions, and are at the basis of quantitative modeling exercises for the 

assessment of climate change policies. This document provides a summary of 

results from a series of meta-analyses aimed at estimating parameters for six 

specific damage functions, referring to: sea level rise, agricultural productivity, 

heat effects on labor productivity, human health, tourism flows, and households' 

energy demand. All parameters of the damage functions are estimated for each of 

the 140 countries and regions in version 9 of the Global Trade Analysis Project 

(GTAP 9) Data Base. To illustrate the salient characteristics of the estimates, the 

change in real gross domestic product is approximated for the different effects, in 

all regions, corresponding to an increase in average temperature of +3°C. After 

considering the overall impact, the paper highlights which factor is the most 

significant one in each country, and elaborates on the distributional consequences 

of climate change.  
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1. Introduction 

Understanding how the ongoing climate change could ultimately affect our 

society and the well-being of current and future generations requires an 

evaluation of the complex interplay between human and natural systems.  

The human or anthropogenic influence on the Earth’s climate is mainly 

associated with the emissions of greenhouse gases (GHGs) in the atmosphere, 

which is in turn related to the level of several economic activities. To forecast the 

future climate, physical scientists need to know the expected level of GHG 

emissions, which depend on scenarios of economic growth as well as on the 

possible implementation of climate mitigation policies. On the other hand, 

economic growth itself is influenced by the climate change, through its manifold 

impacts. As Tol (2015, p. 1) puts it: “There are so many and so different effects: 

crops hit by worsening drought, crops growing faster because of carbon dioxide 

(CO2) fertilization, heat stress increasing, cold stress decreasing, sea levels rising, 

cooling energy demand going up, heating energy demand going down, 

infectious disease spreading, and species going extinct. It is hard to make sense 

of this. Therefore, aggregate indicators are needed to assess whether climate 

change is, on balance, a good thing or a bad thing and whether the climate 

problem is small or large relative to the many other problems that we have”. 

Damage functions have been introduced to this purpose, that is to “translate” 

physical impacts in terms of economic variables inside Computable General 

Equilibrium (CGE) models, Integrated Assessment Models (IAMs) and other 

numerical economic models. Therefore, damage functions are one or more 

relationships between climate variables (typically average temperature, but 

sometimes also humidity or “heating days”) and economic variables (potential 

income, productivity, resource endowments, etc.). It is generally acknowledged 

that damage functions constitute a weak link in the economics of climate change 

(Weitzman, 2010). Pindick (2013) goes as far as saying that “When it comes to the 

damage function (...) we know almost nothing, so developers of IAMs can do 

little more than make up functional forms and corresponding parameter values.” 

In line with Revesz et al. (2014), we rather take a more positive stance, as we 

think it is possible to achieve a better parametrization of damage functions if the 

different mechanisms bringing about economic effects are clearly distinguished, 

and if information from non-economic studies is properly exploited and filtered. 

Nonetheless, even if our damage function estimates are based on peer-reviewed 

empirical studies, several shortcomings in the underlying estimates remain and 

this work is being made available to push the community to improve on the 

estimates.  
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Various other methodologies have been employed for the estimation of 

damage function parameters, from subjective expert assessment (Nordhaus, 

1994) to panel methods (Dell et al., 2014) to meta-analyses (Tol, 2002). Also, the 

functions may be built by summing up different effects into a single aggregate, 

or they may retain some sectoral detail. The first approach is typical of earlier 

models like RICE (Nordhaus and Yang, 1996, Nordhaus and Boyer, 1999), 

MERGE (Manne et al., 1995) and CETA (Peck and Teisberg, 1992), where a 

relationship is posited between loss of potential income (GDP) and temperature. 

More recent contributions, based on multi-sectoral models like DART (Deke et 

al., 2001), GTEM (Pant, 2002), ICES (Eboli et al., 2010) and ENVISAGE (Roson 

and van der Mensbrugghe, 2012) keep the sectoral detail and attribute the 

various impacts to different variables and parameters in a disaggregated 

macroeconomic model, which typically has a general equilibrium structure. 

The main advantage of holding distinct the different economic effects of 

climate change, despite the cost of higher data collection and computational 

complexity, is that it is possible to trace the various mechanisms through which 

the climate can affect the economic system. Furthermore, in a general 

equilibrium formulation, it is possible to account for second-order effects linked 

to variations in relative prices, which are often very relevant. 

This document illustrates the methodology and presents some results for the 

estimation of damage functions parameters, for all 140 countries and regions in 

the version 9 of the Global Trade Analysis Project (GTAP 9) Data Base (Aguiar et 

al., 2016), and for six climate impacts: sea level rise, variation in crop yields, heat 

effects on labor productivity, human health, tourism and household energy 

demand. Effects from 1°C up to 5°C average temperature increments are 

separately considered, as most impacts are non-linear.  

The GTAP social accounting matrix has become a de-facto standard for the 

calibration and implementation of computable general equilibrium models, or 

integrated assessment models with a CGE core, so our set of estimates can be 

seen as a “ready-to-use” information source for the realization of climate-related 

numerical experiments with a general equilibrium structure. 

Our parameters are obtained by processing information coming from many 

diverse studies, based on different approaches and methodologies, as we are 

undertaking an interdisciplinary assessment of climate change impacts. This 

means that, although we are trying to build a standardized data set, the original 

information remains intrinsically heterogeneous. Consequently, our results have 

the same strengths and weaknesses as their primary references, which are 

difficult to judge, except for the fact that most of them are from published 
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sources. Due to uncertainty in climate damage estimates, the supplementary files 

published with this article include a spreadsheet that allows users to modify key 

input parameters used in our calculations.  

The paper is structured as follows. Section 2 clarifies the scope of the work 

and illustrates the overall estimation strategy. Sections 3 to 8 are devoted to 

presenting the methodology and some estimates for the six impact typologies, 

whereas detailed numerical results (Tables S1-S9) are available in a separate, 

downloadable “Supplementary Material” document. Section 9 provides a 

synthesis of the findings by showing first-order approximations of the change in 

national GDPs triggered by the various effects, when the average temperature is 

assumed to increase by three Celsius degrees (estimates at the national level are 

presented in the Appendix). Finally, the results are discussed in a concluding 

section. 

2. Scope and estimation strategy 

Despite the fact that the choice of functional forms and parameters of damage 

functions is critical in determining the results in all integrated assessment 

models, an account of this delicate task can be typically found concealed only 

inside the technical description of the various models.1 To the best of our 

knowledge, this is the first paper that almost exclusively focuses on damage 

function estimation. 

This is because our aim is providing a key ingredient to other researchers, to 

help them developing better models for climate change impact and policy 

assessment, through the provision of a framework for moving from diffuse 

empirical estimates to a consistent set of shocks (mainly for CGE analysis). 

Results can be adapted and tailored to their specific needs, and useful 

evaluations, possibly including some systematic sensitivity analysis on 

parameter values, could be undertaken. We also supply a complementary 

spreadsheet, where all impact parameters, global or regional, can be modified. 

The typical model we have in mind is a global computable general 

equilibrium model, and this explains why we are providing parameters in a 

format consistent with the latest GTAP database. However, our estimates could 

well fit other types of models, for example partial equilibrium, regional ones. 

The choice of a CGE background has some important implications, inducing 

us to provide information only about economic impacts that are expected to 

                                                           

1 A synthetic description of estimation procedures for some popular IAM models can be 

found in Bosello and Roson (2007). 
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affect resource endowments, productivity, technology, etc. for factors and goods 

having explicit, formal markets. This deliberately leaves out some important 

economic impacts, which cannot be easily captured by means of CGE-like 

models, e.g.: non-market public goods, ecosystem services and option values, 

health status of persons outside the labor force, etc.. 

For each of the impact categories we are considering, we start by reviewing 

the recent, mostly non-economic literature on the specific subject. We typically 

select one or a few articles that we believe convey useful information for our 

purposes. The selection criteria are: (a) the article has to be published in a 

refereed, scientific journal or similar kind of publication; (b) it has to be 

sufficiently recent; (c) it should provide, at least in principle, global coverage. 

Especially this last criterion leaves out some important contributions, having the 

nature of case studies. However, whenever new or better quality information 

would become available in the future, we encourage the interested researchers to 

modify our parameters and impact estimates, using the accompanying data 

spreadsheet. 

After the identification of our primary source of information, we elaborate the 

results so that parameter values can be expressed in terms of variables that can 

be found inside an economic model (e.g., factor productivity), with the desired 

degree of regional disaggregation. For instance, epidemiological studies could 

provide information about “people at risk” and “mortality” for a given disease. 

Neither variable can be typically found in a CGE model, so one should first 

convert the information in terms of “lost labour days”, then “labour 

productivity”, and so on. This conversion process is quite tricky and working 

assumptions are introduced all along the way, which are subjective and based — 

at best — on educated guesses.2 

Another potential problem is that most sectoral studies evaluate the impacts 

not only in terms of climatic variables, but also as a function of other “scenario” 

hypotheses, including economic ones. Here, epidemiological studies provide 

again a good example, since the actual impact of diseases depends, and quite 

importantly so, on the level of economic development. We want to single out the 

contribution of the changing climate in affecting the diffusion of some diseases, 

net of the economic growth effect. Some studies, based on econometric or similar 

                                                           

2 On the other hand, the modifiable spreadsheet we provide allows changing several 

parameter values, whenever better data becomes available or alternative assumptions are 

adopted. For example: temperature thresholds for heat stress effects on labor 

productivity, elasticity parameters for international tourism flows, and many others. 
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techniques, actually allow for such an analysis. However, when our impact 

parameters are plugged back into an economic model, are the endogenous 

income levels generated by the model consistent with the assumed parameter 

values? 

This last point highlights a more general issue: we are (deliberately) not 

considering adaptation behavior. This means that we are implicitly presuming 

that: no defensive infrastructure is built to prevent sea level rise, no changes are 

introduced to crop varieties and cultivation methods, no acclimatization to 

higher temperatures takes place, no new disease prevention measures are taken, 

no new tourism marketing strategies are adopted, etc. Are these assumptions 

realistic? Of course not! We are not aiming at producing “realistic” impact 

forecasts. Indeed, adaptation could effectively curb some negative effects of 

climate change, but it does not come without a cost. The careful modeler should 

then introduce adaptation costs alongside lower values for impact parameters. 

We provide central values (or best estimates) of climate change impacts in the 

various categories, but we refrain from tackling any analysis of uncertainty, or 

from evaluating the overall robustness of our findings. Actually, some of the 

original studies do not supply information like standard errors of the 

parameters, whereas for those in which such information is available (in some 

way), converting it to a different spatial and temporal scale would be a rather 

complicated process. 

We understand that assessing uncertainty in climate change impacts is 

essential from both a scientific and a practical policy perspective, but we leave 

the issue for further future research. The full impact of climate change is a slowly 

unfolding event, and data continue to be gathered by experts in great efforts such 

as the Inter-governmental Panel on Climate Change (IPCC). New evidence will 

be available, and confidence on data and parameters will improve over time. 

Nonetheless, climate change impacts are and will remain differentiated among 

sectors and regions, which requires both a continuous interdisciplinary 

cooperation and the development of modeling platforms for the simultaneous 

appraisal of multiple impacts. 

All in all, there are important caveats to be kept in mind to appreciate, on one 

hand, the limitations of our study and, on the other hand, how our estimates 

should be properly utilized in subsequent modeling exercises. 

3. Climate change impact #1: Sea Level Rise 

A large number of studies reviewed by the Fifth IPCC Assessment Report 

(IPCC, 2014) have shown that the increase in global temperature brings about an 
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increase in the level of the sea. Sea level rise (hereafter SLR) affects the land stock 

through the erosion, inundation or salt intrusion along the coastline. This 

phenomenon is in turn generated by (i) the thermal expansion of water bodies 

and (ii) glaciers’ melting.  

The share of land which may be lost (in terms of economic production factor) 

depends on several country-specific characteristics, like: (i) the composition of 

the shoreline (cliffs and rocky coasts are less subject to erosion than sandy coasts 

and wetlands); (ii) the total length of the country coast; (iii) the share of the coast 

which is suitable for productive purposes (i.e. in agriculture); (iv) the vertical 

land movement (VLM). The latter is a generic term for all processes affecting the 

elevation at a given location (tectonic movements, subsidence, ground water 

extraction), causing the land to move up or down. This is typically a slow process 

with values commonly between -10 mm/year (sinking) and +10 mm/year (rising). 

Local vertical land movement becomes relevant when looking at the local effects 

of sea level rise. The orders of magnitude are comparable, and VLM can thus 

either exacerbate or dampen the SLR.  

The literature offers several studies dealing with the SLR, but they are mainly 

local and country-level studies or macro-level studies, where countries are 

aggregated into large macro-regions. Perhaps the most employed model is DIVA 

(Vafeidis et al., 2008), which is an integrated model of coastal systems that 

assesses biophysical and socio-economic consequences of SLR.  

In our estimates, we focus on losses of land (which is almost exclusively used 

as a production factor in agriculture), disregarding other potential negative 

impacts, for example on the infrastructural capital stock, located nearby the 

coast. We do this for a number of reasons. First, climate-induced sea level rise is a 

very slow process, so it should not be confused with floods, storm surges, and 

other extreme events. Therefore, it can be safely assumed that important 

economic activities, urban settlements and infrastructure can and will be 

relocated inwards. Second, despite what is commonly believed, there is simply 

not enough solid scientific evidence (and explanations in terms of physical 

processes) linking climate change to a possible increase in the frequency of some 

extreme events.3 For instance, DIVA does not consider an increase in storm 

surges frequency and intensity. On the other hand, Losada et al. (2013) actually 

detect an increase in storm intensity associated with sea level rise, for Latin 

                                                           

3 This argument applies to impacts of extreme events on the human health as well 

(Bosello et al., 2008). For a modeling effort on the economic implications of extreme 

events, see Calzadilla et al. (2007). 
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America and the Caribbean. A similar claim is made by Reguero et al. (2015), 

assessing the population and physical capital exposure to future, climate-

induced flooding in the same region. However, these studies do not provide 

useful evidence for our purposes, for two main reasons. First, statistical 

correlation (based on a limited time span and referring to a specific region) does 

not prove causality. Second, “exposure” is not a synonym of “damage”.4 

3.1 Methodology 

The latest IPCC Assessment Report (IPCC AR5) reports the global mean SLR 

(in meters) associated with the global mean surface temperature change (in °C), 

at the time intervals [2046-2065] and [2080-2100]. These estimates, plotted in 

Figure 1, suggest that there exist a positive relationship between SLR and the 

increase in global mean surface temperature, but also a time component, related 

to the substantial inertia of the physical processes involved.  

 

 

Figure 1. Global mean surface temperature change (°C) and mean sea level rise (m). 

Source: Authors’ elaboration from IPCC (2014). 

To better understand the nature of the relationship between the global mean 

SLR, the increase in the mean global temperature and time, we ran a series of 

regressions, finding that the following equation provides a satisfactory fit for the 

relationship:  

                                                           

4 Furthermore, the estimates of impacts on infrastructure by Reguero et al. (2015) are 

based on weak and questionable assumptions. They assume, for instance, that the ratio of 

capital to total national income is a time-invariant constant. Also, they assume that the 

physical capital location is the same as that of population. Both hypotheses are patently 

unrealistic. 
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𝑆𝐿𝑅 = [(𝛼 + 𝛽𝛥𝑡)(𝑇 − 2000)]        (1) 

where Δt is the change in average global temperature with respect to the baseline 

[1985-2005], and T is the year period. A panel estimation of equation (1) gives a 

value for the α coefficient of 0.000954281, whereas the corresponding value for β 

is 0.003421296.  

To account for the vertical land movement (V), equation (1) can be modified as 

follows: 

𝑎𝑆𝐿𝑅 = [(𝛼 + 𝛽𝛥𝑡 − 𝑉)(𝑇 − 2000)]      (2)     

where aSLR is the adjusted sea level rise. Data on VLM by country have been 

retrieved from the SONEL database (www.sonel.org).  

For example, the adjusted SLR associated with an increase in temperature of 

+1°C and VLM of +0.001 m/yr (rising) at the year 2050 is:  

0.16878 = [(0.000954281 + 0.003421296𝑥1 − 0.001)(2050 − 2000)] 

that is, about 0.17 meters.  

Using the DIVA v2.04 model, Arnell et al. (2014) provide estimates of the 

percentage loss in the coastal wetland for 16 macro-regions and 3 single 

countries. These estimates, reported in Table 1, are associated with a future 

global mean SLR of 0.16 m, predicted by the HadCM3 climate model under the 

A1b SRES scenario.  

 

Table 1. Changes in coastal wetland at 0.16 m of SLR by macro-region, %.  

Region/country % change in coastal 

wetland by 0.16 m of SLR 

Region/country % change in coastal 

wetland by 0.16 m of SLR 

West Africa -0.07 Australasia -0.12 

Central Africa -0.13 North Africa -0.21 

East Africa -0.12 West Asia -0.22 

South Africa -0.17 West Europe -0.17 

South Asia -0.1 Central Europe -0.2 

South-East Asia -0.12 East Europe -0.19 

East Asia -0.22 Canada -0.06 

Central Asia 0 USA -0.24 

Meso-America -0.18 South America -0.19 

Brazil -0.09 - - 

Source: Arnell et al. (2014). 

Each of the 140 GTAP 9 database regions has been associated to one macro-

region of Table 1. The percentage loss in coastal wetland (Table 1) has been 

http://www.sonel.org/
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multiplied by the percentage of erodible coast and applied to the whole coast. 

For the European regions, the shares of erodible coast have been obtained from 

the Eurosion project (http://www.eurosion.org/) while for the remaining 

countries we have adopted the 70% value suggested by Bird (1987, 2010). 

Considering which fraction of total coast is suitable for agricultural and other 

productive activities we have estimated the fraction of agricultural land which is 

lost when SLR equals 0.16 meters. Scaling up, we got the share of productive 

land which is lost for one meter of SLR, labelled LR. Data on coastline length are 

provided by the CIA database (www.cia.gov); data on the fraction of coast 

suitable for agricultural activities have been obtained from UNEP (2005).  

The percentage change in the land stock by year and country, LRT, is computed 

by multiplying the percentage of effective land change by meter of SLR, LR, and 

the predicted adjusted SLR, as follows:  

𝐿𝑅𝑇 = 𝐿𝑅[(𝛼 + 𝛽𝛥𝑡 − 𝑉𝑅)(𝑇 − 2000)]       (3)    

Notice that the impact function (3) has four parameters. Two parameters (α, β) 

are common across all regions, two other parameters (LR and VR) are 

country/region specific.  

Table S1 shows, for each GTAP 9 region, the percentage loss of land by meter 

of SLR, corresponding to the parameter LR in (3), and the vertical land motion 

(VLM), corresponding to the parameter VR.  

Table S2 illustrates the percentage losses of productive land endowments for 

+1, +2, +3, +4 and +5 °C increases in average temperature, at the years 2050 and 

2100, for all 140 countries and regions. As one can see, relevant physical effects of 

SLR are concentrated in a few countries, in particular: small island states of 

Oceania, Central America and Asia, Hong Kong SAR, China, Japan, Singapore, 

Jamaica, Puerto Rico, Trinidad and Tobago, Cyprus, Croatia, Bahrain, Kuwait, 

Qatar, United Arab Emirates and Mauritius.  

4. Climate change impact #2: Variation in crop yields (agricultural 

productivity) 

Climate change is expected to bring about higher temperatures, a higher 

concentration of CO2 in the atmosphere, and a different regional patterns of 

precipitation. These are all factors affecting crop yields and agricultural 

productivity. Not surprisingly, effects of climate change on agricultural 

production volumes are perhaps the most studied area of sectoral impacts. 

Despite the many studies realized and the extensive empirical evidence 

produced, however, it is still difficult to identify some sort of “consensus” for the 

http://www.eurosion.org/
http://www.cia.gov/
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most likely impacts of climate change on agricultural productivity, especially for 

all world regions. This is because the issue is intrinsically complex and the 

eventual effect depends on several factors, which are difficult to evaluate ex-ante, 

for example: (i) the role of adaptation behavior by farmers, firms and 

organizations, including variety selection, crop rotation, sowing times, etc.; (ii) 

the amount of fertilization due to higher CO2 concentration; (iii) the actual level 

of water available for irrigation, and irrigation techniques. 

Some studies in this area are based on controlled experiments. Others are 

based on crop models applied to different crops in different regions and on the 

basis of different climate scenarios. This heterogenous information is 

summarized in the latest IPCC Assessment Report (2014), while efforts are under 

way to standardize the process of agronomic experiments and modeling (AgMIP, 

2014). 

Because of the heterogeneity of the underlying available information, we 

follow here two distinct approaches. The first approach, similar to the one 

adopted by Roson and Sartori (2010), relies on a meta-analysis provided in the 

Fifth IPCC Assessment Report (2014), providing central estimates for variations 

in the yields of maize, wheat and rice. We elaborate on these results to get 

estimates of productivity changes for these three crops, in all 140 regions and for 

the five levels of temperature increase, from +1°C to +5°C. 

The second approach is similar to that of Cline (2007), and brings about an 

estimate of productivity changes for the whole agricultural sector in the various 

regions. The decision about which estimates to use in a general equilibrium 

simulation depends on the level of industrial disaggregation of the model. We 

suggest to use the first set of parameters if maize, wheat and rice are considered 

as separate industries, and the second set for the rest, or for the whole 

agricultural sector if this is regarded as a single aggregate industry. 

4.1 Methodology 

The IPCC AR5, similarly to the previous one, provides a graphical summary 

(Figure 7-4 in IPCC (2014)) for estimates of changes in productivity of maize, 

wheat and rice obtained by several studies. It distinguishes between tropical and 

temperate regions and identifies a non-linear interpolation function for the two 

cases, with and without simple agronomic adaptation. The figure is reproduced 

here below (Figure 2). 
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Figure 2. Percentage simulated yield change as a function of 

local temperature change. 

Source: IPCC (2014). 

We first express the central values (without adaptation) of Figure 2 as 

percentage variations in the following table: 

Table 2. Central values of the percentage simulated yield change as a function of local 

temperature change.  

 Temperate  Tropical  

 +1°C +2°C +3°C +4°C +5°C +1°C +2°C +3°C +4°C +5°C 

Maize -1% -3% -4% -7% -11% -4% -8% -10% -12% -14% 

Wheat -5% -6% -7% -8% -9% 4% -4% -20% -34% -44% 

Rice -4% -3% -2% -7% -16% 0% -2% -4% -6% -8% 

Source: IPCC (2014). 

We then associate the type of region (temperate or tropical) to its latitude, 

assuming that the reference tropical region has a central latitude of 0° (the 

equator) and the reference temperate region has a central latitude of 40° (North 
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or South). We compute the percentage variation VY in the yield of crop C in a 

region with latitude L as: 

𝑉𝑌(𝐶, 𝐿) = 𝑉𝑌(𝐶, 0) + (𝑉𝑌(𝐶, 40) − 𝑉𝑌(𝐶, 0)) ∗ 𝐿 40⁄     (4)    

Therefore, we assume that the variation in the crop yield ranges linearly from 

its baseline value at the equator up (or down) to its value at 40° latitude and 

beyond. Considering the central latitude of all countries and regions in the GTAP 

9 dataset, we get the parameters shown in Table S3. 

A second and different methodology is based on the Mendelsohn and 

Schlesinger (1999) reduced form Agricultural Response Functions in the 

formulation proposed by Cline (2007), where the variation (DY) in output per 

hectare is expressed as a function of temperature T, precipitation P and CO2 

concentration K: 

𝐷𝑌 = 115.992𝐷𝑇 − 9.936𝐷𝑇2 + 0.4752𝐷𝑃 + 7.884𝐷𝐾 𝐾⁄    (5)   

We need to link changes in yield to variations in average temperature only. To 

this purpose, we rely on temperature and precipitation data from the United 

States Geological Survey (USGS) Coupled Model Intercomparison Project Phase 

5 (CMIP5) Global Climate Change Viewer (GCCV), averaging results from many 

Global Circulation Models5. We collected information on baseline levels and 

variation in average annual temperature and annual precipitation, by country, 

comparing the period 1980-2004 (central year 1992) with the period 2050-2074 

(central year 2062) under the RCP 8.5 scenario. We also assume that from 1992 to 

2062 (70 years) the concentration of CO2 rises (from a baseline level of 365 ppm) 

at an annual rate of 2.11 ppm. 

We use the variation in temperature as an indicator, expressing how much the 

climate has changed. By dividing the country-specific variation in precipitation 

with the one of temperature we get a precipitation to temperature coefficient, p. 

In the same way, we get a CO2 concentration to temperature coefficient k, so that 

we can write: 

𝐷𝑌 = (115.992 + 0.4752𝑝 + 7.884𝑘 365⁄ )𝐷𝑇 − 9.936𝐷𝑇2   (6)    

Finally, we need to transform DY to percentage changes DY/Y, which can be 

done by dividing DY by the output per hectare Y, in millions of dollars. Cline 

(2007) uses estimated values for the year 2003 which, unfortunately, vary widely 

                                                           

5 http://regclim.coas.oregonstate.edu/visualization/gccv/cmip5-global-climate-change-

viewer/ 

http://regclim.coas.oregonstate.edu/visualization/gccv/cmip5-global-climate-change-viewer/
http://regclim.coas.oregonstate.edu/visualization/gccv/cmip5-global-climate-change-viewer/


Journal of Global Economic Analysis, Volume 1 (2016), No. 2, pp. 78-115. 

 
 

91 
 

(for example, from 29 in Australia to 8707 in the Republic of Korea), ultimately 

producing unrealistically volatile percentage changes for agricultural 

productivity. 

Here we follow a different strategy, which is based on the “calibration” of the 

output per hectare Y. The latter is chosen so that the percentage change for +3°C 

is “in line” with a simple mathematical average of estimated variations in the 

yield of the three crops maize, wheat and rice, for the same temperature change. 

“In line” means in the range +/-1%, but conditional on a minimum level for Y of 

500 and a maximum level of 10,000. 

After calibrating the output per hectare, the percentage variation of 

agricultural output for 1, 2, 3, 4 and 5°C increases in temperature can be 

computed for each of the 140 GTAP 9 countries and regions. The results are 

shown in Table S4.  

The variation in temperature refers to the average annual temperature specific 

to each country or region, which may differ from the variation in the global 

average temperature. On the basis of actual global and regional temperature 

variations, we estimated for each region a correction factor, which can be used to 

get an approximated regional variation in temperature through multiplication 

from the global change. These correction factors are displayed in Table S5. When 

only information on the change in global temperature is available, one could 

therefore estimate the corresponding change in regional temperature using the 

correction factors. 

A quick inspection of the table reveals that variations in regional temperature 

are typically wider at a higher latitude and whenever the region has limited or 

no access to the sea or ocean.  

5. Climate change impact #3: Heat stress and labor productivity 

Labor productivity is affected by working conditions. Heat stress, determined 

by high temperature and humidity, implies more frequent pauses, interruptions, 

lower speed and higher probability of injury (Tawasupa et al., 2013). Even if 

acclimatization, on one hand, and protective measures like air conditioning, on 

the other hand, can help curbing the negative effects of heat stress, the 

effectiveness and applicability of any adaptation mean is limited and dependent 

on the context. 

Previous work with the ENVISAGE model (Roson and van der Mensbrugghe, 

2012), has shown that the impact of increased heat on average labor productivity 

can be substantial and, furthermore, very much differentiated between 

developing and developed countries. 
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To our knowledge, Kjellström et al. (2009) is the only paper investigating the 

relationship between climate change, heat stress and labor productivity at a 

global scale.6 Other works have considered local impacts, or produced regional 

maps of occupational heat exposure (Hyatt et al., 2010). Hsiang (2010) finds that 

variations in surface temperature are more important than the occurrence of 

cyclones in determining the economic performance of industries in Caribbean 

states, and attributes this effect to the response of workers to thermal stress. 

However, this causal association is unwarranted, and not supported by physical 

or economic evidence. 

In this section, we estimate heat damage functions, which are relationships 

between average temperature and labor productivity. The functions are 

estimated for three sectors: Agriculture (A), Manufacturing (M) and Services (S) 

and for 1, 2, 3, 4 and 5 °C increases in average temperature, bringing about a total 

of 140 x 3 x 5 = 2100 estimated parameter values.  

5.1 Methodology 

Most quantitative standards to protect workers from heat injury use the “wet 

bulb globe temperature” (WBGT) to define the percentage of a typical working 

hour that a person can work assuming the remaining time is rest. The heat 

exposure index WBGT (unit=°C) is a combination of the natural wet bulb 

temperature (measured with a wetted thermometer exposed to the wind and 

heat radiation at the site), the black globe temperature (measured inside a 150 

mm diameter black globe), and the air temperature (measured with a “normal” 

thermometer shaded from direct heat radiation). Lemke and Kjellström (2012) 

propose a methodology to estimate the WBGT from meteorological data.  

In this study, following Kjellström et al. (2009), we compute average monthly 

WBGT using average temperature and relative humidity, on the basis of the 

Australian Bureau of Meteorology equations: 

𝑊𝐵𝐺𝑇 = 0.567𝑇 + 3.94 + 0.393𝐸      (7) 

𝐸 = (𝑅𝐻 100⁄ ) × 6.105 × 𝑒𝑥𝑝(17.27𝑇 (237.7 + 𝑇)⁄ )     (8) 

where T is the average air temperature in °C; E is the average absolute humidity 

(water vapour pressure) in hPa; and RH is the average relative humidity in %.  

                                                           

6 A possible limitation of Kjellström’s approach is that it is based on standards prepared 

for safety, and it is not statistically validated. 
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Monthly average temperature (and precipitation) by country has been 

obtained from the Weatherbase website7. Unfortunately, data on average relative 

humidity is not generally available for all countries in our set, but only for 

specific locations (from http://www.weather-and-climate.com), for example New 

Delhi (Figure 3). 
 

Figure 3. Average relative humidity in New Dehli. 

Source: http://www.weather-and-climate.com. 

In order to approximate the relative humidity from temperature and 

precipitation data, we ran a series of regressions, finding that the following 

equation provides a satisfactory estimation: 

𝑅𝐻 = 67.1082 − 0.8438𝑇 + 0.2305𝑃 − 0.0005𝑃2    (9)    

where P is precipitation in mm. 

Therefore, we have computed monthly WBGT for all countries, using 

temperature and precipitation, in order to assess labor productivity in the three 

sectors. Kjellström et al. (2009) produced a graph of “work ability” as the 

maximum percentage of an hour that a worker should be engaged working 

(Figure 4). The four curves represent four different work intensities. We assume 

that 200 W corresponds to office desk work and service industries; 300 W to 

average manufacturing industry work and 500 W to agricultural work. 

  

                                                           

7 http://www.weatherbase.com/weather/countryall.php3  

http://www.weather-and-climate.com/
http://www.weather-and-climate.com/
http://www.weatherbase.com/weather/countryall.php3
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Figure 4. Work ability (productivity) as a function of WBTG (°C) at four work 

intensities (Watts): acclimatized (left panel) and rescaled (right panel). 

Source: Left panel Kjellström et al. (2009); Right panel authors’ elaborations. 

 

We found that curves in Figure 4 (left panel) would give rise to a too rapid 

and unrealistic decline in productivity at high temperature, especially because 

we are considering here aggregate averages. We have therefore replaced the 

relationships depicted in the left panel of Figure 4 with the ones shown in the 

right panel of Figure 4. These are characterized by: (a) a minimum threshold, 

below which no heat effects are felt (26°C for Agriculture, 28°C for 

Manufacturing, 30°C for Services), (b) a minimum level of 25% for productivity, 

reached at 36°C for Agriculture, 43°C for Manufacturing and 50°C for Services. 

We computed the percentage level of productivity for all months, sectors and 

countries. Monthly values have subsequently been aggregated in a yearly 

average, since economic flows in many CGE and other numerical models are 

expressed on an annual basis. 

We scaled up temperature levels from 1 to 5 Celsius degrees, assuming that 

the monthly distribution of temperature will be unaffected and relative humidity 

stays the same. Finally, we computed the relative percentage change in (annual) 

productivity with respect to the baseline, for all countries and sectors. 

5.2 Results Overview 

Table S6 presents our estimates for the 140 countries and regions in the GTAP 

data base. Column headers refer to the sectors (A, M, S) and to the increment in 

temperature (1, 2, 3, 4 and 5 °C). 

The box-plots in Figure 5 display the distribution of impacts on labor 

productivity for the three sectors, for the various changes in temperature. In the 
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services, impacts are minimal for a +1°C increase, with a mean of -0.17% 

(maximum impact -1.67% in Thailand), but no impacts for 108 out of 140 regions. 

At five degrees, some effects are felt in about half of the regions (73), with a mean 

of -3.71% and maximum impact -18.16% in Singapore. For the manufacturing 

industries, the effects are more significant, but the distributions are still very 

much skewed, with 88 regions with no impacts for +1°C, 47 for +5%. The mean 

percentage variation in labor productivity ranges from -0.90% to -8.12%. The 

most significant effects are perceived in Singapore, from -5.96% to -31.46%. 

Agriculture is the sector most significantly affected by higher heat stress. Some 

effects are felt by about half of the countries (73) already at +1°C, but at +5°C only 

those countries located at sufficiently high latitudes (32) do not experience 

reductions in labor productivity. The mean percentage variation ranges from -

2.52% to -17.48%. 

 
Figure 5. Distribution of impacts on labor productivity in the three sectors, for the 

various changes in temperature. 

Source: Authors’ elaborations. 

6. Climate change impact #4: Human Health 

This section describes the methodology and presents some estimates of the 

effects of increases in temperature on labor productivity, due to changes in 

mortality and morbidity incidence of some diseases. Other possible economic 

impacts, like variations in private or public expenditure on health care services, 

are not considered, because of lack of data at the desired level of regional and 

industrial disaggregation. Also, it should be noticed that some effects on human 

health may well emerge as a consequence of impacts in other categories. We 

have separately taken into account, for instance, heat exposure, and nutrition-

related diseases are clearly linked to agricultural productivity. 
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The approach follows the one in Bosello et al. (2006) by considering some 

vector-borne diseases (malaria, dengue, schistomiasis), heat and cold related 

diseases, and diarrhea.8 It does not consider other diseases and impacts 

mentioned in the IPCC AR5 (2014), like effects of extreme events, heat exposure 

effects on labor productivity (separately considered), hemorrhagic fever with 

renal syndrome, plague, chikungunya fever, Japanese and tick-borne 

encephalitis, cholera and other (non-diarrhea) enteric infections, air quality and 

nutrition related diseases, allergic diseases, mental health. A recent report by 

WHO (2014) considers other impact categories, but it does not add further 

evidence for the purposes of this work.9 

Because of lack of data, it is not possible to ascertain possible non-linear 

impacts of temperature, so the results are expressed as changes in average labor 

productivity for a +1°C increase in temperature (implicitly assuming that the 

relationship is approximately linear). Also, the focus is on impacts on labor 

productivity, whereas other impacts, like those on private and public 

expenditure for health services, or non-market impacts (e.g., value of life for 

retired persons) are not taken into account. 

We consider only the direct effect of temperature on the incidence of the 

various diseases, despite the fact that other variables (most notably economic 

development expressed through income levels) are very important (especially for 

vector-borne and diarrhea illnesses). To this end, the projected income levels at 

the year 2050 are taken as reference values for determining the degree of 

vulnerability in each region. This method implies that indirect effects on human 

health are not taken into account. For instance, climate change could bring about 

a reduction of income and a worsening of living conditions, making a society 

more vulnerable to the direct effects on health. 

6.1 Methodology 

The starting point of the analysis presented in Bosello et al. (2006), which is in 

turn based on Tol (2002), is a survey of the epidemiological, medical and 

interdisciplinary literature, with the aim of obtaining best estimates for the 

                                                           

8 This work has been criticized by Ackerman and Stanton (2008), but their critiques have 

been forcefully rebutted in Bosello et al. (2008, ibid.). 
9 The report considers: heat-related mortality in elderly people, mortality associated with 

coastal flooding, mortality associated with diarrhoeal disease in children aged under 15 

years, malaria population at risk and mortality, dengue population at risk and mortality, 

undernutrition (stunting) and associated mortality. For the reasons explained in Section 

2, only malaria and dengue data can be usefully exploited in the present study. 
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number of extra cases of mortality and morbidity (for a set of diseases) associated 

with a given increase in average temperature. These estimates often specify the 

distribution of cases in the age/sex structure of a population, as well as the length 

of the illness period (if applicable).  

This information can therefore be combined with data on the structure of the 

working population, to infer the number of lost working days or other variables. 

For example, Bosello et al. (2006) present the following Table 3, expressing the 

“additional years of life diseased in 2050 by region and disease”. 

 

Table 3.  Additional years of life diseased in 2050 by region and disease. 

 Malaria Schistom. Dengue Cardio Respiratory Diarrhea TOT 

USA 0 0 0 -167,357 22,257 83,070 -62,030 

Europe Un. 0 0 0 -171,908 20,936 25,608 -125,364 

E.E.F.S.U. 0 0 0 -259,884 46,884 57,717 -155,283 

Japan 0 0 0 -65,353 33,161 912 -31,280 

RestAnn.I 0 0 0 -45,232 11,108 1,361 -32,763 

EnergyExp. 7,219 -1,088 29 -66,363 1,706,267 112,633 1,758,697 

ChinaIndia 632 0 0 -1,119,902 770,340 156,271 -192,659 

Rest World 232,737 -154,375 203 -194,383 3,683,042 834,294 44,01,518 

Source: Bosello et al. (2006). 

In this study, we review the most recent literature on health impacts, and in 

particular some studies mentioned in IPCC (2014), to modify the figures 

contained in Table 3 above, with the aim of scaling up or down the variation in 

labor productivity calculated by Roson and Sartori (2010). For example, the 

change in labor productivity assumed for Japan, for +1°C, was +0.034%, which 

corresponds to the -31280 decrease in diseased years in Table 3. Our updated 

estimates for the number of diseased years in Japan point to an increase in the 

number of years (+57894), corresponding to a change in labor productivity of -

0.063%. 

The procedure is slightly more complicated if several countries are included 

in the same macro-region, especially if those estimates of changes in productivity 

showed in Roson and Sartori (2010) have different sign. In this case, the original 

estimates are still multiplied by a correction factor, but the magnitude of the 

factor is determined by a mathematical optimization software, ensuring that the 

average variation in productivity for the whole group is consistent with the 

updated figures of diseased years. 

For malaria, our primary source is Béguin et al. (2011), who suggest that extra 

cases of malaria, net of the effect due to income growth, should only be found in 
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Africa and China/India. Correspondingly, we set to zero the impact for Energy 

Exporting Countries, while increasing10  the number of cases (diseased years) in 

Africa and China/India, since the new estimates appear to be higher than those at 

the basis of Table 3. 

For schistomiasis, it is unclear why in the original estimates by Tol (2002) an 

increase in temperature should produce a decrease in the number of cases, if the 

effect of temperature is considered net of the impact of higher income levels. 

Actually, some studies highlight that climate change is expected to create the 

conditions for a potential spreading of the disease in some regions, for example 

in China (Zhou et al., 2008). Therefore, we decide to disregard any impact for 

schistomiasis, by putting zeros in the corresponding column. 

Dengue is the most rapidly spreading mosquito-borne viral disease, showing 

a 30-fold increase in global incidence over the past 50 years (WHO, 2013). 

However, according to Åström et al. (2012) the geographic distribution of dengue 

is strongly dependent on both climatic and socioeconomic variables. They 

present a model showing that, under a scenario of constant per capita GDP, 

global climate change results in a modest but important increase in the global 

population at risk of dengue. Under scenarios of high GDP growth, this adverse 

effect of climate change is counteracted by the beneficial effect of socioeconomic 

development. With higher income sets at projected 2050 levels, the vulnerability 

to dengue fever is rather low. We accommodate for this information by 

concentrating all extra cases of dengue in Africa, and by setting the figures of 

diseased years at 10% of their original levels in the benchmark Table 3.11 

Among heat-related illnesses we consider, in line with Tol (2002), respiratory 

and a share of cardiovascular diseases. As the recent literature on heat risks for 

health (e.g., Honda et al., 2013) does not present very significant changes from 

earlier estimates, the contribution of heat-related diseases to the overall variation 

in labor productivity has been kept unchanged.12 The same reasoning applies to 

health impacts of changes in diarrhea cases (Kolstad and Johansson, 2011). 

                                                           

10 The increasing factor used in this study, approximating the higher vulnerability 

detected by Béguin et al. (2011) is +33%, or 1/3. 
11 This is again intended to approximate the difference in the results between old and 

new epidemiological studies. 
12 Heat-related diseased are very important for elderly people (65+), and some differences 

may be noticed in the literature for this specific population group. In this study, however, 

we focus on the implied changes in labour productivity, that is on the working 

population (under 65), for which the differences among the available estimates are quite 

negligible. 
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On the contrary, our assumptions about cold-related diseases are dramatically 

different. In Bosello et al. (2006), consistent with Table 3, a reduction of cold-

related cases brings about a reduction of mortality/morbidity in most countries, 

and an increase in labor productivity. However, the recent epidemiological 

literature has questioned the finding of a positive effect of higher temperature 

levels on winter mortality and morbidity. For example, Ebi and Mills (2013) 

argue that although there is a physiological basis for increased cardiovascular 

and respiratory disease mortality during winter months, the limited evidence 

suggests cardiovascular disease mortality is only weakly associated with 

temperature. This is because several illnesses have a strong seasonal component, 

in which relative temperature, not absolute temperature, actually matters. 

Correspondingly, we disregard any effect of climate change on cold-related 

diseases. This has very important implications for our estimates, because now all 

health impacts become negative in all countries. 

6.2 Results Overview 

The estimated percentage variation of labor productivity for 140 regions and 

for a +1°C increase in temperature is presented in Table S7. The unweighted 

average is -0.27%, and the range is from -0.75% (India, Nepal and Sri Lanka) to 

0% (Canada).  

The variations can be grouped in 32 classes. Figure 6 displays the number of 

countries in each class. The three most numerous classes are: -0.631% (African 

countries), -0.034% (Western Europe), -0.135% (Central America). 

 

Figure 6. Number of countries in each class. 

Source: Authors’ calculations. 
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7. Climate change impact #5: Tourism 

Climate is one of the main drivers of international tourism, and tourism 

revenue is a fundamental pillar of the economy in many countries. It is 

surprising that the tourism literature pays little attention to climate and climatic 

change and, when it does so, the analysis is typically based on local case studies.  

It is equally surprising that the climate change impact literature pays little 

attention to tourism. Previous work with the ENVISAGE model (Roson and van 

der Mensbrugghe, 2012) has shown that the impact of changing tourism 

attractiveness can be substantial, bringing about a sizable redistribution of 

income among various countries. 

Perhaps the only study conducting a quantitative assessment of climate 

impacts on international tourism flows, at a global scale, is Hamilton et al. 

(2005).13 We start from some functions and parameters computed in this study to 

elaborate data on arrivals, departures, temperature and expenditure. The 

ultimate goal is estimating a relationship between average temperature changes 

and net inflow of foreign currency and expenditure of foreign tourists in the 

hosting country. 

7.1 Methodology 

Hamilton et al. (2005) have built an econometric model for the estimation of 

international tourism flows. They used econometric techniques to estimate 

parameters of two functions. In the first function, the logarithm of yearly arrivals 

of tourists in a country is expressed as a function of land area, average 

temperature, length of coastline and per capita income. In a second function, the 

logarithm of the ratio of departures over population is expressed as a function of 

temperature, income, land area and number of countries with shared land 

borders. 

We take these two functional relationships to get equations linking arrivals 

(A) and departures (D) in a region solely to its average temperature (T), in 

Celsius degrees: 

𝐴 = 𝐾𝐴 × 𝑒𝑥𝑝(0.22𝑇 − 0.00791𝑇2)      (10)    

                                                           

13 This study has some limitations, but we do not believe those invalidate it as a source of 

information for our analysis (and, in any case, no alternative global estimates are 

available, to the best of our knowledge). Hamilton et al. (2005), for instance, do not 

distinguish between tourists and other type of travelers, and they only model 

international tourism. 
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𝐷 = 𝐾𝐷 × 𝑒𝑥𝑝(−0.18𝑇 + 0.00438𝑇2)      (11)    

where KA and KD are country-specific constants, accounting for all other factors 

different from temperature. We calibrate these parameters on the basis of 

regional data on yearly arrivals, departures and average temperature. 

We can see that both relationships are non-linear. The maximum number of 

arrivals is obtained at the optimal average temperature of 13.9°C. The minimum 

number of departures is obtained at 18.6°C. For increases in temperature below 

the 13.9°C threshold, arrivals increase and departures decrease, therefore a 

country gets a beneficial net inflow of foreign currency. The opposite is found for 

increases in temperature above the 18.6°C threshold. For variations between 

13.9°C and 18.6°C, effects are ambiguous, not only because arrivals and 

departures push to different directions, but also because the average expenditure 

level of an incoming tourist may be different from the expenditure level of an 

outgoing tourist14. 

We estimated changes in arrivals and departures for 1, 2, 3, 4 and 5 °C 

increases in average temperature from its baseline level, for all 140 countries and 

regions. Variations in arrivals multiplied by per capita expenditure minus 

variations in departures multiplied by per capita expenditure give a first estimate 

of changes in net foreign currency inflow. 

Of course, changes can be both positive and negative. Furthermore, summing 

up all changes does not typically gives a zero result. However, as it will be made 

clearer in Sub-section 7.3, if foreign currency flows are interpreted as 

international income transfers, we would actually need to impose that all 

variations sum up to one. 

To this end, we scaled up or down all our estimates, by subtracting the 

average net inflow if positive, or adding it if it turns out to be negative. One 

possible interpretation of this ex-post rescaling is in terms of relative 

competitiveness, since flows are not only affected by local conditions, but also by 

conditions in competing destinations. 

7.2 Results overview 

Our rescaled estimates of changes in net foreign currency inflows, relative to 

the 2011 GDP level, are displayed in Table S8. These variations follows a rather 

non-linear path. Limited increases of temperature are beneficial but higher levels 

are detrimental in China, the Republic of Korea, Italy and Turkey. Vice versa, 

                                                           

14 We estimated per capita expenditure data on the basis of IMF data on tourism revenue 

(IMF, 2014). 
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initial negative impacts turn positive at +5°C in Mongolia, Estonia, Lithuania, 

Slovak Republic, Slovenia, Bulgaria, Belarus, Romania and Kazakhstan. 

Benefits are concentrated in a few countries. For example, at +3°C only 26 

countries get an increase in tourism revenue, whereas as many as 97 countries 

experience a relative loss. Benefitted countries include North European and 

North American countries, Japan and the Russian Federation, which are all rich 

nations: tourism impacts have adverse distributional consequences. 

Furthermore, the dispersion of income flows gets larger as temperature rises. 

The standard deviation of the distribution of net revenue inflows increases 

progressively from about 1.48 billion US$ at +1°C up to around 5.36 billion US$ 

at +5°C. 

7.3 Inclusion of Tourism Impacts in a CGE Model 

Our estimates of net currency inflows are meant to be used as inputs in a CGE 

model, assessing economic impacts of climate change. The exogenous shock can 

be inserted as a variation in international income transfers and, possibly, as a 

shift in the pattern of final consumption. 

Most CGE models are based on a “territorial” definition of income. In other 

words, GDP rather than GNP is taken as the reference value for income and 

other macroeconomic variables. This implies that there is no distinction between 

nationals and foreigners when income is spent inside a country boundaries. 

However, the purchasing power of foreigners comes from income generated 

abroad. In order to consider this important aspect, Berrittella et al. (2006) and 

Bigano et al. (2008) simulate the occurrence of some international income 

transfers, whose magnitude corresponds to the estimated change in net currency 

inflows. 

Since foreign tourists are unlikely to have a structure of consumption similar 

to that of the representative household in a country, a further step is simulating 

an exogenous increase (or decrease) in the consumption of tourism (hotels, 

restaurants, recreation facilities) and domestic transport services, which can be 

implemented by inserting some shifting parameters in the final demand for these 

items. 

8. Climate change impact #6: Household Energy Demand 

Household energy demand is directly affected by variations in temperature. 

This relationship is rather complex, as the impact on energy consumption 

depends on the season, the source of energy and the climatic condition of the 

country. 
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For instance, an increase in winter temperatures would cause a decrease in 

energy used for heating purposes, whereas an increase in summer temperatures 

is likely to cause an increase of energy consumed for cooling purposes, 

depending on the latitude of the country (i.e., tropical, temperate, cold).  

In what follows, the impact of increasing average temperature on energy 

demand is computed, taking into account all these factors.  

8.1 Methodology 

Our estimates are based on De Cian et al. (2013), who computed parameters of 

a model for household energy demand, by energy source and season, using 

econometric techniques and a global panel database. Energy demand is 

expressed as dependent, among other factors, on the (natural logarithm of) 

seasonal average temperature, expressed in °F.  

Table 4. Long run temperature elasticities from De Cian et al. (2013). 

Season Climate Electricity Gas Oil Products 

Winter Cold -0.085 -0.422 -0.406 

Mild -0.085 -0.422 -0.406 

Hot -0.085 -0.422 -0.406 

Spring Cold 0.522 0.686 -0.395 

Mild -0.077 0.686 -0.395 

Hot 0.263 0.686 -0.395 

Summer Cold -0.321 -1.008 -0.912 

Mild 0.2 -1.008 -0.912 

Hot 0.174 -1.008 -0.912 

Fall Cold - 0.685 0.0002 

 Mild - 0.685 0.0002 

 Hot - 0.685 0.0002 

  Source: De Cian et al. (2013). 

Seasonal long run temperature elasticities by energy source and by climate 

region (Table 4) are those estimated by De Cian et al. (2013). Since we are 

interested in the variation of total energy demand, elasticities in Table 4 have 

been scaled down by considering the share of energy used for heating and 

cooling purposes (Table 5). The adjusted elasticities are shown in Table 6.   

Data on average seasonal temperature by country are obtained from the 

Weather Database (www.weatherbase.com), whereas each country has been 

http://www.wheaterbase.com/
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classified as Cold, Mild or Hot, according to its latitude.15 Applying the model 

estimated by De Cian et al. (2013), to the percentage variation in temperature 

corresponding to 1°C (and 2, 3, 4, 5°C) increase in seasonal average temperature 

has been multiplied by the elasticities reported in Table 6.  

Table 5. Share of energy demanded for heating and cooling purposes, by energy source 

and climate region.  

 Electricity Gas Oil Products 

Climate Heating Cooling Heating Heating 

Cold 

Mild 

Hot 

8% 5% 72% 88% 

Mild 9% 17% 56% 86% 

Hot 7% 28% 48% 86% 

    Source: U.S. Residential Energy Demand Database (www.eia.gov) 

 
Table 6. Adjusted long run temperature elasticities. 
Season Climate Electricity Gas Oil Products 

Winter Cold -0.0111 -0.3053 -0.3558 

Mild -0.0221 -0.2345 -0.3496 

Hot -0.0300 -0.2008 -0.3496 

Spring Cold 0.0682 0.4962 -0.3462 

Mild -0.0200 0.3812 -0.3401 

Hot 0.0929 0.3264 -0.3401 

Summer Cold -0.0419 -0.7292 -0.7993 

Mild 0.0519 -0.5602 -0.7853 

Hot 0.0614 -0.4797 -0.7853 

Fall Cold - 0.4955 0.0002 

 Mild - 0.3807 0.0002 

 Hot - 0.3260 0.0002 

     Source: Authors’ calculations. 

8.2 Result overview 

Table S9 shows our estimates of the percentage variations in household 

energy demand corresponding to a +1, +2, +3, +4 and +5°C increase in the average 

seasonal temperature. Estimates are provided for the 140 GTAP 9 regions, but 

they are available for more countries. 

                                                           

15 Hot countries: latitude<27°; mild countries: 27°<latitude<63°; cold countries: 

latitude>63°. For aggregated regions the latitude has been computed as a weighted sum 

of the latitude of each single country. 

http://www.eia.gov/
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A quick inspection of the table reveals that: (i) household demand for 

electricity rises, especially in the hot countries, as this source of energy is mainly 

used for air conditioning. The highest relative growth is expected in the African 

countries; (ii) household demand for energy from oil products dramatically 

decreases in all countries, especially in cold countries; (iii) the effect on 

household demand for energy from gas is positive (negative) in mild and cold 

(hot) countries. 

9. Aggregation of impacts and first-order effects on GDP 

The illustration of our estimates for the different impacts of the climate change 

has made clear that the impacts are different in sign, magnitude and relevance 

for the various countries and regions. Therefore, it would be interesting to see 

what is the net aggregate effect, for example in terms of real income or GDP, of 

the combined impacts. 

A fully fledged analysis of this kind would require a global, disaggregated 

macroeconomic model, in which our estimates would be employed to shock 

exogenous parameters. For instance, an exogenous reduction in agricultural 

productivity would reduce the relative competitiveness for the domestic 

agricultural sector, increasing imports from abroad, inducing a real devaluation, 

expanding production and exports in manufacturing and services.  

Such kind of analysis is beyond the scope of this paper. Nonetheless, we can 

provide here a first-order approximation of the impact on the real GDP, because 

most of the impacts affect variables which are components of the Gross Domestic 

Product, with the exception of the variation in energy demand. Because of that, 

an approximated impact on the GDP can be readily obtained by multiplying the 

variation of one GDP component by its share, and in particular: 

 impacts of sea level rise on GDP can be gauged by multiplying the 

estimated changes in available land resources by the share of land rents 

income on total GDP; 

 agricultural productivity variations can be evaluated by multiplying the 

changes by the share of agricultural value added on total GDP; 

 the reduction in labor productivity due to heat stress has an effect on the 

GDP that can be estimated as the sum of variations in labor productivity 

in the three sectors (agriculture, manufacturing, services) multiplied by 

the shares of (sectoral) labor income on total GDP; 

 human health effects can be obtained by multiplying the estimated 

changes by the share of labor income on total GDP; 
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 the net inflow of foreign currency due to tourism flows can be directly 

expressed as relative to a baseline GDP level. 

Even if the sum of the different impacts on GDP is only limited to first-order 

effects and does not consider general equilibrium feedbacks, we believe that such 

an approximation of the composite GDP footprint could reveal important 

insights about the order of magnitude, relevance, and distribution of the various 

impacts. Tables A1.1 and A1.2 in the Appendix present our estimates, 

corresponding to an increase in average temperature of +3°C16 for the five 

categories above and their total algebraic sum. We highlight with a green 

background color the positive net variations in GDP, with a yellow background 

moderate reductions (from -1% to -5%) and with a red background the large 

reductions (below -5%). In addition, we identify, for each country, which among 

the three types of impact is the one contributing the most to the overall effect on 

GDP.17 

A quick inspection of Tables A1.1 and A1.2 reveals a number of thought-

provoking facts. Only a few countries (Mongolia, Canada, and central-northern 

European countries, including Russia) are expected to get moderate gains from a 

+3°C increase in temperature, and these gains are typically due to an increase in 

tourists' arrivals (and diminished outgoing domestic tourists). Many countries 

(whose estimates are highlighted in red) are expected to suffer from dramatic 

reductions in GDP. The most negatively affected countries are Togo in Africa (-

18.29%) and Cambodia in South-East Asia (-18.25%), where again Tourism is the 

most important factor.  

In addition to tourism income, variations in agricultural and labor 

productivity are also very relevant in many countries. Sea level rise, on the other 

hand, never appears as the primary factor, because of its limited incidence on 

total land and the relative small share of land income on GDP. Remarkably, 

Tourism is (possibly with Heat) the least studied effect of climate change, maybe 

because it causes a redistribution of income and wealth, but it has negligible 

consequences at the global level.  

                                                           

16 This refers to changes in the global average temperature. For agricultural productivity, 

we consider regional variations, which could be larger or smaller than the global one. 

Furthermore, sea level rise does not depend only on temperature levels, but on time. For 

this estimation, we set the year 2100 as the one corresponding to the +3°C temperature 

increment. 
17 Therefore, it has the same sign of the total variation. 
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It is also evident that effects are similar among similar countries, that is when 

they belong to the same region or are characterized by comparable socio-

economic conditions. Figure 7 presents a scatter plot of total percentage 

variations of GDP against per capita income levels. The correlation between 

these two variables is positive and as large as 0.445, confirming a robust finding 

from previous studies (e.g. Eboli et al., 2010; Roson and van der Mensbrugghe, 

2012) that climate change impacts act like a highly regressive tax, often making 

poor countries poorer, and rich countries richer. 

Figure 7.  Percentage variation of GDP against per capita income level. 

Source: Authors’ calculations. 

It is known that economic development is itself correlated with geographical 

location and temperature: in contemporary data, national income falls 8.5% per 

degree Celsius in the world cross-section (Dell et al., 2009). We do not discuss 

here any causality or interpretation for this correlation. Rather, we show in 

Figures 8 and 9 another two scatter plots, this time contrasting GDP variations 

with average temperature and latitude. The corresponding correlation factors 

are, respectively, -0.785 and 0.732. 
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Figure 8. Percentage variation of GDP against average temperature. 

Source: Authors’ calculations. 
 

Figure 9. Percentage variation of GDP against latitude. 

Source: Authors’ calculations. 

10. Conclusions 

In this paper, a new set of climate change damage functions has been 

presented, improving earlier estimates in several ways. First, functions and 

parameters are provided with a large regional disaggregation (140 countries) and 

in a format which, by referring to the latest GTAP social accounting matrix, 

makes them easily employable in many general equilibrium and other economic 

models. Information from new, recently available studies, mostly from the non-

economic literature, has been processed in such a way that parameter values for 
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economic variables, like labor productivity, can be estimated. Because of the 

wealth of primary data utilized in this exercise, it has also been possible to detect 

non-linearities in many impacts of climate change. 

Although our estimates are mostly intended for use in multi-sectoral 

macroeconomic models, we undertook a simple aggregation procedure to verify 

the order of magnitude of the various impacts, as well as their distribution. Our 

findings confirm that the negative effects of climate change will be mainly borne 

by developing countries, located in tropical regions. 
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Appendix 

Table A1.1. Impact on GDP of +3°C by country 
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Table A1.2. Impact on GDP of +3°C by country 

 


