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A Latin Hypercube Sampling Utility:
with an application to an Integrated
Assessment Model

By DOMINIQUE VAN DER MENSBRUGGHE?

This paper describes the use of a utility that creates a Latin Hypercube Sample (LHS).
The LHS approach to sampling has had wide applicability as it represents a Monte
Carlo strategy that limits sample size and therefore computer time to study the out-
comes of simulations under uncertainty. Other approaches to deal with the size’
problem include Gaussian Quadrature (GQ) (Arndt, 1996), often used in the con-
text of large models such as computable general equilibrium models. However, the
GQ approach is most suitable for focusing on a small set of uncertain parameters
as the number of model evaluations increases substantially with the number of un-
certain parameters and/or the moments to track. The utility is a new version of the
LHS utility that has been publicly available from Sandia National Labs since the
early 2000s. Beyond the recoding from FORTRAN to C/C++, the new version of the
utility has some additional features including new output options and additional sta-
tistical distributions. This paper demonstrates the use of the new utility by coupling
it to an integrated assessment (IAM) model which is derived from the META 21
model developed by Dietz et al. (2021). The META 21 model has many components
that can be readily integrated into global economic models that track greenhouse gas
emissions—a simple climate module, economic impacts derived from sea-level and
temperature rises and bio-physical tipping points such as the Amazon dieback. The
IAM results suggest that the social cost of carbon increases by an average of around
26% when taking into account the tipping points and that the tipping points lead to
an additional decline of 0-5% in per capita consumption in 2100 on top of the other
damages related to climate change. The utility and the code to the IAM model are
available as supplementary materials.
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1. Introduction

This paper describes the use of a utility that creates a Latin Hypercube Sample
(LHS). The LHS approach to sampling has had wide applicability as it represents a
Monte Carlo strategy that limits sample size and therefore computer time to study
the outcomes of simulations under uncertainty.

The LHS approach combines two features. The first is that the sampling do-
main is segmented into equal lengths, which guarantees that the full domain will
be sampled from—unlike the unrestricted Monte Carlo sampling approach. The
second is that the sample is ordered such that it is close to a desired correlation
matrix across the full or subset of sampled variables, which may be derived from
statistical estimation. In the absence of a user-specified correlation, the approach
assumes that the sampled variables are uncorrelated.

In the realm of large, complex and non-linear economic models such as com-
putable general equilibrium (CGE) or more broadly, integrated assessment mod-
els (IAM), one alternative to Monte Carlo-type simulation has been the Gaussian
Quadrature (GQ) approach to approximate the uncertainty bands for key model
results (Arndt (1996), DeVuyst and Preckel (1997) and Pearson and Arndt (2000)).
This approach is particularly useful for assessing the uncertainty of model results
for a limited number of uncertain parameters and tracking a limited number of
moments. The upper bound on the number of simulations (or points) needed for

the GQ approach is given by:!
;_(N+M
M

where N is the number of random variables and M is the order of the quadrature—
typically 3.2 With 5 uncertain variables the upper bound is 56 points for an order 3
GQ estimation, but this jumps to 1,771 for 20 uncertain variables. The number of
required points rises rapidly for higher orders, for example to over 10,000 for 20 un-
certain variables and order 4. Villoria and Preckel (2017) argue that using order 3
approximation leaves out significant information on the underlying distribution,
for example skewness. The IAM used in this paper has 582 uncertain parameters,
which for an order 3 GQ approach would require over 33 million points. The sam-
pling strategy for the JAM uses a wide mix of distributions—some of which are far
from symmetric and also incorporates a number of desired correlations, so an or-
der 4 approach is probably necessary to capture the higher moments. For this, the
GQ approach would require over 4 billion points. Even if the uncertainty is limited
to a subset of the parameters, the number of points needed for an order 4 approach

Villoria and Preckel (2017)

20rder 3 insures that the approximation is good for the first 2 moments of the underlying distri-
bution.
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would be prohibitive. Moreover, the IAM has other uncertain processes related to
the tipping points, which are not subject to the same sampling approach as the un-
certain parameters. The LHS approach also has the benefit of being straightforward
to implement. Finally, the availability of parallelization has taken some ’sting’” out
of the size’ problem, even on desktop computers. Villoria (2017) demonstrated the
benefit of parallelization with an application of Monte Carlo simulations with the
GTAP model. In that study, parallelization was implemented using a script in R.
The Monte Carlo simulations in this study use a script in Python (van der Mens-
brugghe, 2023c), which can be readily adapted to other contexts. For this study,
parallelization reduced the compute time of the 20,000 simulations from 7-9 hours
to 50-60 minutes on a relatively new and well-equipped desktop computer running
under Windows.

The LHS utility described herein is a new version of the LHS utility that has
been publicly available from Sandia National Labs (Swiler and Wyss, 2004) since
the early 2000s. Beyond the recoding from FORTRAN to C/C++, the new version
of the utility has some additional features including new output options and addi-
tional statistical distributions.

This paper demonstrates the use of the new utility by coupling it to an inte-
grated assessment (IAM) model which is derived from the META 21 model de-
veloped by Dietz et al. (2021). The META 21 model, beyond demonstrating the
LHS approach to taking into account uncertainty, also has many components that
can be readily integrated into global economic models that track greenhouse gas
emissions—a simple climate module, economic impacts derived from sea-level and
temperature rises and bio-physical tipping points such as the Amazon dieback. The
utility and the code to the IAM model are available as supplementary materials.

The LHS utility has been compiled as a stand-alone “exe’ file for Windows-based
computers,® and can readily be embedded in a complex workflow. It has five out-
put options for the sample: (1) a "CSV’ file; (2) an "XML’ file, which is ready for
use in Excel; (3) a ‘GMS’ text file for GAMS; (4) a ‘GDX’ file, also for use with
GAMS; and (5) the original file format of the FORTRAN code. The LHS utility
includes over 40 statistical distributions and the ability to impose a correlation
relation across two or more of the sampled variables. A summary user guide is
available (van der Mensbrugghe, 2023b) and is meant to document this version of
the LHS utility— and for most users should be sufficient—, but the more complete
documentation is available in Swiler and Wyss (2004), save for the new features
included with this version of the LHS utility.

A subsequent section illustrates the use of the LHS utility by coupling it to a
relatively recent integrated assessment model (IAM) called META 21 (Dietz et al.
(2021)), which has a focus on a number of potential bio-physical tipping points,

3The C/C++ code is intended to be fully ANSI compatible and should compile readily on UNIX-
based computers including the Macintosh operating system.
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which can be generated by rising temperatures. This paper only highlights two
modules of the META 21 model to demonstrate the LHS utility, though the results
section relies on the full model. Many components of META 21 can be readily
ported to global CGE models that generate greenhouse gas emissions—emissions
are (nearly) exogenous in Meta 21. Like with most IAMs, emissions lead to changes
in the carbon cycle (including atmospheric chemistry), which generates changes
to radiative forcing and temperature, which then leads to impacts—for example
on GDP, and, in the case of META 21, bio-physical tipping points. In addition
to demonstrating the utility of the LHS approach to Monte Carlo-type sensitivity
analysis, the META 21 model also shows how to incorporate random events in
model simulations. In META 21 these are related to the start of tipping points,
but many examples abound in economics such as recessions, pandemics, natural
catastrophes, conflicts, etc. Integrating extreme events in complex CGE models is
a challenge for a number of reasons: (1) availability of historical data to estimate
probabilities of the extreme events; (2) the need for assumptions on how the prob-
abilities evolve over time; (3) the evolution of vulnerable populations based on
demographics, migration, education, income and sources of livelihood; (4) assess-
ing the economic impacts of the event; (5) integrating a typically local event into
a typically aggregate model; and (6) running forward looking simulations enough
times to capture the stochasticity of the event. Pauw et al. (2011) is an example of a
study that has assessed some of these issues in the context of a country-based CGE
model—extreme weather events in Malawi. Fernando, Liu, and McKibbin (2021)
provides a summary of linking extreme events to economic potential and describes
and summarizes one of the key global databases for evaluating weather-based ex-
treme events.

The original implementation of META 21 is an Excel file coupled to an Excel
add-in known as @Risk, which uses the same type of sampling methodology as the
LHS utility.* This paper uses a re-coded GAMS version of META 21, that has been
thoroughly tested and is able to re-produce the Excel version results.” The GAMS
code is available in the supplemental materials. The final section describes how to
couple the LHS utility with the IAM and highlights some of the key findings from
the uncertainty analysis. Large parts of the GAMS version of the META 21 code can
be ported almost directly into GAMS-based economic models of climate change.
For example, the ENVISAGE® model has been using the same carbon cycle and en-
ergy balance components of META 21 and could be readily augmented with one
or more of the tipping point components. Similarly, ENVISAGE has climate-related
economic impacts—though using a bottom-up approach rather than the top-down
approach in META 21. The challenge for models like ENVISAGE is the limits to

4 Available at https://github.com /openmodels/META-2021
5In the deterministic version as the stochastic results are likely to differ.
6van der Mensbrugghe (2019)
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Monte Carlo simulations, even with parallelization. A single suite of 10,000 simu-
lations of the META 21 model takes 25-30 minutes, which is about the amount of
time for a single dynamic run of the ENVISAGE model.

2. Latin Hypercube Sampling
2.1 An introduction to Latin Hypercube Sampling

Monte Carlo methods are well established techniques to explore model or sim-
ulation uncertainty when the underlying model is based on uncertain parameters
(but with an assumed distribution). For each uncertain parameter, a draw of a ran-
dom deviate is taken from the known distribution—and if there are k uncertain
parameters, each draw will consist of selecting a random deviate for each of the
k uncertain parameters. Latin Hypercube Sampling (LHS) (McKay, Beckman, and
Conover, 1979) was introduced as an efficient sampling method, where efficiency
allows for limiting the size of the sample while at the same time insuring that the
entire sample space is covered.

Before explaining LHS, we describe first the technique for generating random
deviates. If a distribution has an easily invertible cumulative distribution function
(CDF), the first step is to generate a random deviate from the Uniform distribution
over the range [0,1] and then to use the inverse function to generate the random
deviate.” This is the so-called inverse transform method.

We highlight the technique using the Logistic distribution, which has a readily
invertible CDF. Its CDF is given by:

F(x)

where y is the location parameter and s is the scale parameter. The inverse of the
CDEF, also known as the quantile function, is easily derived for any value of F, say

p:

. 1
14 e (p)/s

r=Qp) = psin ()

Figure 1 plots an example Logistic CDF with parameters 4 = 9 and s = 3. We ran-
domly select 5 deviates from the Uniform distribution: 0.12,0.36,0.54,0.79, 0.95,
visible along the y-axis. We then generate the random deviates for the Logistic dis-
tribution by locating the Uniform deviates on the y-axis of the CDF and evaluating
the corresponding Logistic deviates, respectively 3.0, 7.3, 9.5, 13.0, and 17.8, easily
derived from the Logistic quantile function.

7Not all CDF’s have an easy expression for their corresponding quantile function, including the
Normal distribution. In the case of the latter, the inverse error function is readily available in most
software packages. The Beta distribution is an example where the inverse CDF is not readily avail-
able. In these cases, other numerical techniques are deployed to generate random deviates.
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Figure 1. The Logistic distribution CDF and selecting random deviates

In the standard Monte Carlo method, a random deviate is sampled each time
from the entire domain of the random variable, i.e., over [0,1]. In the case of se-
lecting a sample of 5, nothing guarantees that the sample will cover the full range.
For example, 4 of the numbers could cluster around 0.65 with a fifth at 0.35. LHS
sampling breaks the [0, 1] range into 5 equal segments of width 0.2 (for a sample
of 5). Sampling is done within each of the sub-ranges, guaranteeing that the sam-
ple will cover (almost) the entire range. In the more general case, with a sample
size of n, LHS sampling divides the [0, 1] range into equivalent sub-ranges with a
width of 1/n and samples within the sub-ranges. The efficiency argument is that
LHS allows to have a smaller sample size than standard Monte Carlo sampling,
while ensuring that the full potential sample range is sampled. The technique is
implemented for each random variable.

Figure 2 highlights a simple example of the potential benefits of LHS sampling.®
The example uses the Logistic distribution with a location parameter of 0 and a
scale parameter of 2. The mean of this distribution is 0 and the standard deviation
is 3.628.° The x-axis of each graph, shows the number of draws for each sample,
ranging from 50 to 5000 in steps of 50. The left-panel shows the deviation of the
sample mean from the expected mean of 0 and the right-panel shows the percent
deviation of the standard deviation from the expected standard deviation. Both fig-
ures clearly indicate that the LHS samples very quickly converge to the expected
moments of the distribution. The Monte Carlo simulations show persistent devia-
tions in the standard deviation, even with 5,000 draws.!°

8The GAMS code that generates the data for the figure is available upon request.

2
o0 =/ @, where s is the scale parameter.

10The advantage of LHS sampling with many uncertain parameters is disputed, though part of
the issue relates to memory and computer time, which is disappearing as an issue. A blog post
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Figure 2. Comparison of LHS versus Monte Carlo sampling for a Logistic(0,2) distribution

As coded in the LHS utility, the sample for each variable is in ascending order,
as the samples are derived from each sub-range in ascending order. The deviates
could be further randomized by sampling without replacement each of the deviates
of each variable. The LHS utility does something a bit different. In the absence
of user-specified correlations, it re-orders each column of deviates in such a way
that the resulting correlation matrix across variables is (nearly) the identity matrix,
while preserving the marginal distribution of each column. This is called the Iman-
Conover method (Iman and Conover, 1982). The method is explained intuitively
and with a numerical example in the Appendix. The same method is used if the
user specifies a correlation matrix for all or some of the variables—a correlation of
0 is assumed for all pairs of variables for which a correlation is not user-provided.

In summary, the LHS method for Monte Carlo sampling, uses a method of strat-
ified sampling, which is an efficient method to generate a sample that is nearly sure
to cover the entire sample space. In addition, the deviates of each variable are or-
dered in such a way to (nearly) match a desired correlation scheme, which in the
absence of any user-imposed correlations is the identity matrix.

2.2 An introduction to the LHS utility

The LHS utility is a program that generates a LHS sample based on a user-
prepared input file describing the contours of the LHS cube: the list of random
variables with their respective distributions and distribution parameters, and op-
tionally correlations across pairs of the random variables. The input file is a simple
text file and its contents is described in the Summary LHS User Guide (van der

by Lonnie Chrisman (https://lumina.com/latin-hypercube-vs-monte-carlo-sampling /) summarizes
part of this discussion and provides additional references.
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Mensbrugghe, 2023b). The output of the LHS utility is a data file containing the
sample. The user has several output options including a CSV file, an XML file
(readily loaded into Excel), a text-based GAMS data file and a GDX file.!!

The LHS utility is a full recoding of the original utility, which has been de-
veloped in FORTRAN and can be downloaded from https://dakota.sandia.gov/
downloads.!? The re-coding has been done in C/C++ using mostly ANSI-C stan-
dards and thus should be readily compilable on other platforms, notably Linux
and macOS.13

The two versions have been extensively tested and produce virtually the same
sample.!* The key advantage of the new version is the relative ease of coding in
C/C++ compared with FORTRAN and the built-in memory management. While
the FORTRAN code relies on a set of limits to the size of matrices, the C/C++ code
uses dynamic memory management.'®

The C/C++ version, in addition, has new features including additional distribu-
tions and new (and aforementioned) output options that facilitate embedding the
utility in a workflow. The specific new features are:'®

¢ Ten new distributions: Cauchy, Dagum, Fréchet, Gompertz, Gumbel, La-
place, Lévy, Logistic, Kumaraswamy and Rayleigh!”

 Four additional output options: CSV, XML, GMS and GDX!®

* A new optional random number generator based on the Mersenne Twister
algorithm described in Matsumoto and Nishimura (1998) and Nishimura
(2000)*

HThe new software is fully backward compatible and the default output format is still supported.

12The download includes the full suite of software in Sandia National Lab’s Dakota package. The
LHS code is located in dakota-6.16.0-public-src-cli\packages\external\LHS. Interested users can
contact the author for a copy of the FORTRAN code, which includes a few additional features and a
Makefile to compile with GFortran.

13The new Mersenne Twister algorithm for generating random numbers requires a compiler that
recognizes non-standard integer types, notably unsigned long long.

14The largest differences, and they are negligible, relate to deviates for the Beta distribution. The
C/C++ code uses a different set of routines for the latter.

15The original FORTRAN code in fact crashed when attempting to generate the LHS sample for
the IAM model. It had a relatively low limit on the number of potential user-based correlations.

160ne feature that would be useful, but is not currently available, is an indexing feature—such
as in modern packages, e.g., GEMPACK, GAMS, etc. In the case of the application described below,
sampling is done for some 194 countries and each is output individually without the benefit of in-
dexing. To alleviate some of the work in reading the sample, GAMS code is automatically generated
in the workflow to facilitate the mapping of the variable definitions generated by the LHS code and
indexed-based parameters in the GAMS code.

17The latest version of the FORTRAN code includes the Fréchet and Gumbel distributions.

18We also provide GEMPACK code that automates conversion of the CSV output into a GEM-
PACK HAR file.

19The version of this algorithm in the LHS code is explicitly based on a 64-bit architecture, which
may limit its portability.
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Table 1. Benchmarking of the LHS software

Average seconds per sampling Index relative to C/C++ with output

w/ output w/o output w/ output w/o output
C/C++ 8.4 6.0 1.0 0.7
FORTRAN 24.7 21.8 29 2.6

Most of the features of the LHS utility are described in the LHS User Guide
(van der Mensbrugghe, 2023b). Users who are interested in the full features of the
LHS utility (apart from the new ones) are referred to the original documentation in
Swiler and Wyss (2004).

Benchmarking suggests that the C/C++ code is significantly faster than the
FORTRAN code. Both are compiled with the Mingw compilers, so we would not
expect to see such large differences. The benchmark involves sampling for the
META 21 simulation described in the next section. The META 21 sample is large
and with a significant number of correlated distributions.?® The sampling is run
100 times for both the C/C++ and FORTRAN code. It is also run with and without
saving the sample. The output file size is over 150MB, so it is possible that C/C++
is more efficient in writing than FORTRAN. The benchmarking results are summa-
rized in Table 1. The FORTRAN version is around 2.9 times slower than the C/C++
code, and the speed difference is not linked to the writing of the output sample.

3. The Integrated Assessment Model

Integrated assessment models (IAMs) of climate change couple economic mod-
els that track GHG emissions with bio-physical models that at a minimum generate
changes in the global mean temperature, which subsequently impact the economy
via changes in economic potential such as crop yields, infrastructure, labor produc-
tivity, etc. Figure 3 provides a schema for the typical IAM model, which has four
components: (1) the socio-economic module, which could be a CGE model, for ex-
ample the GTAP model (Corong et al., 2017); or ENVISAGE (van der Mensbrugghe,
2019) (2) which generates emissions; (3) that impact atmospheric chemistry and the
global energy balance, i.e., temperature; and (4) that impacts economic potential.
In the context of ongoing research under the aegis of the Intergovernmental Panel
on Climate Change (IPCC), most IAMs are using drivers and storylines called the
shared socio-economic pathways (SSPs)—a set of five distinct storylines with var-
iegated pathways for GDP and population growth.?! The SSPs are coupled with
the so-called Representative Concentration Pathways (RCPs)—that represent dif-

20The full sample is a matrix of dimension 10000 x 582 and a correlation matrix of dimension
582 x 582. The benchmark was done under Windows 10 under normal operations (on a non-synced
drive) using an Intel i9 12th generation CPU and 64 GB of RAM.

210"Neill et al. (2017) provides a description of the SSP narratives. The quantification in terms of
population and GDP pathways for the 5 SSPs are described in KC and Lutz (2017) and Dellink et al.
(2017), respectively.
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ferent pathways for climate, with changes in the global mean temperature as one
of the indicators.?? The system will also be influenced by policies—mitigation po-
lices that will change the emission pathways, and/or adaptation policies that will
modify climate-induced impacts.

B Socio-economics:
adaptation Production, demand,
& mitigation energy, land-use

Impacts: Global Emissions & other
regional, local, environmental
& tipping points indicators

Climate signals
& other
environmental impacts

Figure 3. Integrated Assessment

This section is based one such [IAM, the META 21 model (Dietz et al., 2021)
and will be used to illustrate the coupling of the IAM with the LHS utility. The
META 21 model is in the same spirit as Nordhaus” DICE/RICE suite of models
(Nordhaus, 2017), Hope’s PAGE model (Hope and Schaefer, 2016) and the FUND
model (Anthoff and Tol, 2014).23 Like these models, META 21 links emissions to the
carbon cycle, to forcing and temperature change and then to economic damages.
The economic and emissions module of the META 21 model are highly simplified
and are largely exogenous in fact. GDP is driven by exogenous assumptions on to-
tal factor productivity (TFP) and savings and is only impacted by climate-induced

225ee for example van Vuuren et al. (2011).
23Note that these three IAMs were the basis of the U.S. government’s initial report on the so-called
social cost of carbon (SCC), (Interagency Working Group on Social Cost of Carbon, 2016).
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changes in TFP. Similarly, emissions are largely exogenous—not even responding
to changes in GDP—though impacted by some of the modeled tipping points such
as the release of methane from the oceans. Though small changes to GDP pathways
will only have small impacts on emissions, a model such as META 21 is not able to
assess mitigation pathways that require emissions to respond to economic incen-
tives such as carbon pricing, subsidizing investment in carbon-free energy sources,
etc.

This section will focus on only two parts of the META 21 model: (1) the energy
balance model (EBM) that generates the change in global atmospheric tempera-
ture given the changes in emissions-induced radiative forcing; and (2) the ocean
methane hydrate tipping point. The EBM section demonstrates the use of the LHS
utility to provide correlated random deviates for the uncertain parameters of the
EBM. The ocean methane hydrate tipping point section highlights how to generate
random events in a simulation model.

A full description of META 21 and its parameterization is available in the sup-
plementary materials of Dietz et al. (2021). A more cursory description of the
full model and its implementation in GAMS and coupling with the LHS utility
is provided in van der Mensbrugghe (2023a). While skipping a full description of
META 21, the main features include:

1) The carbon cycle, radiative forcing and EBM are largely derived from the
FalR simple climate model.?* One key innovation of the FalR model, in
terms of a simple representation of the carbon cycle was to introduce a
time-varying parameter that enables capturing saturation effects, i.e., the
ability to absorb carbon changes as concentrations of carbon evolve.

2) Changes in global mean surface temperature are down-scaled to country
level.

3) META 21 incorporates a number of key bio-physical tipping points includ-

mg:

* The thawing of permafrost (PFC), which leads to additional car-

bon and methane emissions
* The dissolution of methane hydrates (OMH) which leads to addi-

tional methane emissions
¢ The Amazon dieback (AMAZ), which leads to a jump in carbon

emissions
* Ice sheet melting, which impacts sea-level rise. There are four

sources of sea-level rise: thermal expansion, small ice-sheets and
glaciers, the Greenland ice-sheet (GIS) and the West Antarctic ice-

2AMETA 21 uses a relatively early version of FaIR (Millar et al., 2017). A newer, GAMS-based
version, based on V2.0 (Leach et al., 2021) is available from the author. One of the innovations of V2.0
is the introduction of a 3-box version of the EBM, instead of a 2-box representation, to better capture
transient temperature response.
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sheet (WAIS)
* Modification of the Atlantic Meridional Overturning Circulation

(AMOC), also called the thermohaline circulation. AMOC affects

the change in country-level average temperatures
¢ The weakening of the Indian summer monsoon (ISM), which leads

to an additional damage effect for India.

4) Captures changes in the planet’s albedo from the change of ice cover—
leading to adjustments in the change in the global mean surface tempera-
ture.

5) Interaction effects across the tipping points.

6) Damages that arise from rising temperatures and sea-level rise. Damages
can impact GDP levels and/or GDP growth rates and the central estimates
are based on recent research.

7) Calculates the social cost of carbon using a discounted utility indicator
where the discount rate and pure rate of time preference are both subject
to uncertainty.

The model captures two sources of uncertainty. The first source is the uncer-
tainty in the model’s parameters, for example the climate sensitivity parameter.
META 21 captures this uncertainty with an explicit description of each parameter’s
probability distribution function (PDF), and in some cases also describes the corre-
lation across parameter estimates, for example between equilibrium climate sensi-
tivity and transitory climate sensitivity. This uncertainty is modeled using standard
Monte Carlo techniques with random draws, albeit using the LHS methodology
and targeting correlations across the uncertain parameters where identified. The
second source of uncertainty deals with the start of the tipping points. In each fu-
ture year, there is a non-zero probability that a tipping point starts. The probability
itself increases with temperature. The event’s start is sampled using the Binomial
distribution with a single draw and the temperature-sensitive probability. Once an
event starts, it is irreversible.

The original META 21 model is ‘coded” in Excel and is linked to the Excel add-in
@Risk software for the Monte Carlo draws. The Excel file contains the distribution
information for the uncertain parameters, including their associated correlation as-
sumptions. The draws for the start of events occur independently.?>

The next section provides a deeper dive into two components of META 21—the
EBM to demonstrate the use of LHS for the uncertain parameters and the ocean
methane hydrates to demonstrate incorporation of modeling uncertain events.

B1n principle, one could forego @Risk and use LHS to generate the sample of random deviates
and link the relevant cells in the spreadsheet to the LHS-generated sample. The start of a random
event can be generated with the Excel function BINOM. INV (1, A2, RAND ()), where A2 repre-
sents the relevant probability. In essence this describes a Bernoulli trial with an outcome of 0 or 1.
A macro would be needed to automate the running of the Monte Carlo simulations and save the
desired results.
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3.1 The Energy Balance Module
3.1.1 EBM specification

The energy balance model from DICE, FalR and others can take the same matrix
form:

T, = [1+ A] T,_1 + MRF; 1)

where T represents the (change) in temperature in time f and is defined over two
or more temperature boxes.?® The only input to the EBM is the contemporaneous
level of radiative forcing (and the lagged values of the change in temperature). In
the case of DICE and FalR 1.5 there are two boxes, essentially the atmosphere (and
the surface and shallow ocean) and the (deep) ocean. In FalR 2.0, the ocean box
is split into shallow and deep. The matrix A represents the conveyance of energy
across the boxes and the matrix M represents the impact of the contemporaneous
radiative forcing on atmospheric temperature. In the FalR 2.0 model, the matrix A
takes the following form:

—(/\+K2> /Cq K2/ Cq 0
A= K2/ Co — (K2—|—8K3) /Co  ex3/Co
0 k3/Cs —x3/Cs

where the parameter C is the heat capacity of each box, the x parameters are the
heat exchange coefficients, A is a feedback parameter and ¢ allows to account for
transient warming. M is a 3 x 1 vector with 1/Cj in the first cell.?”

The META 21 model uses a two-box model, the parameterization of which will
be described below. In the full model, the change in temperature derived from
equation (1) is further adjusted by a factor influenced by the changing albedo.

3.1.2 EBM parameterization

The sampling strategy for the energy balance model parameters is provided in
Table 2.28 The sampled distribution modes line up well with the desired modes,
with the largest deviation, around 1.1%, for the mean of the C_0 parameter. Ta-
bles 3 and 4 provide, respectively, the targeted and sample correlations for the en-
ergy balance model parameters. The deviations between the two are not insignif-
icant but are relatively good for the highly correlated parameters such as between

201t is a discrete approximation to the state-space form, which is T = A T + M RF.
27The DICE parameterization can be converted to this matrix notation by setting x, to C3 (in the
DICE code), A is equal to fco22x/t2x02, Cq isequal to 1/C1, C; is equal to C3/C4 and «3 is 0.

BThe parameter A is equated to f2xco2 /ECS, where f2xco2 is known as the climate sensitivity pa-
rameter and is measured as the change in radiative forcing from a doubling of carbon concentration
and ECS is the equilibrium climate sensitivity (also sometimes labeled as t2xco2).

33



Journal of Global Economic Analysis, Volume 8 (2023), No. 1, pp. 21-54.

xi 3 and f2xco2 and between £2xco2 and t2xco?2.

Table 2. Sampling assumptions for the forcing and EBM parameters

Expected Sample
Parameter LHS Distribution mu log mu o
1/C xi_1 Pareto(5.9,0.116) 0.14 0.029 | 0.14 0.029
@) Cc_0 Pareto(1.7,53.0) 128.0 oo | 126.6 259.6
Ko xi_3 Triangular (0.5,0.5,1.24) 075 0174 | 075 0.174
f2xco2 f2xco?2 Normal (3.46,0.437) 346 0437 346 0437
ECS t2xco?2 Normal (3.25,0.800) 325 0.800 | 3.25 0.800

3.2 Ocean methane hydrates (OMH)

The ocean methane hydrates module is one of the bio-physical tipping points
in META 21. Ocean methane hydrates are significant pockets of ice-like crystals of
methane and water under the ocean surface that could be released with rising tem-
peratures. The probability of the beginning of the release of methane from ocean
methane hydrates is given in equation (2), where boyy is the so-called hazard rate.
Given the probability, in each year t, a single random draw from the binomial dis-
tribution is taken with the given probability. The indicator function takes the value
of 1 for every year subsequent to a positive draw, i.e., the release of the methane hy-
drate starts in the first year of the positive draw, and is assumed to be irreversible.
This method for simulating random events could be applied to a number of other
phenornena such as extreme weather events, recessions, etc.

Figure (4) depicts the probability density for a sample of 100,000 random draws
for the range of temperature change from 0 to 3°C. The red line shows the level of
the probability of the methane release starting for each change in temperature—it
starts at 0 and rises to over 30% when the temperature change is 3°C. The mode of
the PDF is at around 0.8-0.9°C. Given that the current estimated level of temper-
ature change is already over 1°C, this parameterization implies a relatively early
start to the release of the methane hydrates.

ptOMH =1—exp (_bOMHT;ztm> )
Table 3. Targeted correlations for the energy balance model parameters
xi_ 1 C_0 xi_3 f2xco2 t2xco2
xi_1 1
C_0 -0.0445 1
xi_3 -0.4372 -0.1198 1
f2xco2  0.0139 -0.0397 -0.4623 1
t2xco2 -0.1934 -0.0802 0.0655 0.6512 1
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Table 4. Sampled correlations for the energy balance model parameters

xi_ 1 Cc_0 xi_ 3 f2xco2 t2xco2
xi_ 1 1
c_0 -0.0184 1
xi_3 -0.3383 -0.0528 1
f2xco2  0.0095 -0.0064 -0.4505 1
t2xco2 -0.1676 -0.0175 0.0623 0.6510 1
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Figure 4. Sampling for OMH, where b = 0.118

randBinomial(l, pPMH) if JOMH =0

)

Once the emissions commence, a constant level of emissions is released each
year until the given stock of sequestered methane runs out, equation (4), where
CH4MH is the initial stock of sequestered methane and A°MH is the annual release.

t—1
OMH; = CH4GMH /AOMH i JOMH — 1 and Y OMH, < CH4JMT (1)

t'=ty
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4. An application

This section describes an application of the LHS tool coupled to the META 21
IAM model.

4.1 Sampling

The sampling is done with the LHS utility using the full distributional assump-
tions from the META 21 model. There are 9 uncertain parameters in the carbon
cycle module—some of which have an identified correlation matrix; there are 6
uncertain parameters in the forcing and EBM module—again, some of which are
assumed to be correlated; there are 8 independent uncertain tipping point param-
eters; and there are 3 uncertain parameters in the economic module. The damage
module contains a very large number of uncertain parameters due to the fact that
the damage parameters—of which there are three—are country specific. In addi-
tion the sampling takes into account the correlation matrix for the temperature-
based damage coefficients. The input file for the LHS utility has over 75,000 lines
in order to take into account the very large correlation matrix across the country-
based temperature damage coefficients. Despite the size of the resulting LHS cube,
the software operates in under 13 seconds. The resulting cube has 582 random
variables sampled 10,000 times.

4.2 Results

This section describes some of the key results from the Monte Carlo simulations
of the META 21 model—including assessing the relative role of including the tip-
ping points in the analysis.

4.2.1 The social cost of carbon

With the current configuration for the simulations with tipping points, the sim-
ulation fails (for numerical) reasons for 183 observations, i.e., just under 2% of the
sample size. Figure 5 presents the histogram for the remaining SCC values greater
than 0 and less than $500. This removes some 17 negative values, of which 10 are
less than $100 in absolute terms, and 51 values above $500, of which 6 are greater
than $1000. There are also some unusual pairings and it might be useful to drill
down to see if there are plausible explanations. For example, sample number 1885
has an SCC of $82 without the tipping points, but over $45,000 when the tipping
points are included. Another extreme example is for sample number 8947. With
tipping points, the SCC is -$89 and around -$6.5 million without the tipping points.

Figure 6 summarizes the SCC for the two configurations—with and without the
tipping points. The median value of the SCC with tipping points is $60, and with-
out tipping points is $48. The latter is somewhat lower than the value of $52 in
Dietz et al. (2021), part of which could be attributed to differences in prices and
exchange rates, we are using $2010 prices and purchasing power parity (PPP) ex-
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Figure 5. Histogram of SCC
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Figure 6. Box and whisker plot of SCC

change rates,?”” with the remainder attributable to changes in sampling strategy
and removal of outliers. Thus, the inclusion of these tipping points raises the esti-
mate of the SCC by around 26%, similar in magnitude to the increase in Dietz et al.
(2021).

4.2.2 Tipping points start year

Table 5 describes the average start year for the uncertain tipping points. The
parameterization assumes that the AMOC and OMH starting points are expected
to start almost immediately, with the average start year for WAIS around 2058 and
a much later start year for the Amazon dieback. The table also provides the fre-
quency of the tipping point within the 2010/2200 time frame over the 10,000 sam-
ples. With the exception of the Amazon dieback, the tipping points are present in
almost the entire sample, with the Amazon dieback occurring in roughly 50% of
the samples. The distribution of the start years can be gleaned from Figure 7. The
start years are heavily skewed towards the left, with the exception of the Amazon

PDietz et al. (2021) inflate the SCC results by 20% to render the values in 2020 prices and exchange
rates. Using the same factor would push our SCC value to $57.
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Table 5. Tipping points start year

Tipping point Average start year Frequency

AMOC 2012 9749
OMH 2016 9743
WAIS 2058 9743

AMAZ 2110 4483

dieback, which has a relatively uniform distribution.*
4.2.3 Change in temperature

Figure 8 shows the change in temperature across the two configurations. The
outer-most curves show the maximum and minimum temperature profiles across
the 10,000 samples. The inner curves show the 95 percentile range. The middle
curve shows the average. With the tipping points, the average temperature change
could reach 4 °C by 2200, with a probability range between 2-6 °C, and a maximum
of 10 °C. Without the tipping points, the ranges are more narrow—notably because
3 of the 5 tipping points have a direct impact on atmospheric concentrations of
greenhouse gases.

4.2.4 Impacts on consumption

We conclude by assessing the impacts of damages and the tipping points on
consumption. Figure 9 shows the average change in consumption in 2100 across
countries relative to a no-damage baseline. There are a handful of countries that
could benefit on average from rising temperatures—most visibly in the upper lati-
tudes, e.g., Canada, Finland, Mongpolia and Russia, but also China and the United
States. The countries that would perceive the highest negative shocks are not vis-
ible as these are mostly small island nations. Other countries that would suffer
damages in excess of 10% include Guyana and Suriname in South America, and
Cameroon, Senegal, Sierra Leone, and Tunisia in Africa. The Netherlands, under
these conditions, could see a fall of around 20%.

Figure 10 shows the impacts of excluding the tipping points in the assessment
of the average damages. For the majority of countries, the impact of excluding
the tipping points from the other damages would lead to a rise of per capita con-
sumption in 2100 of between 0 and 2%. A few might actually benefit in relative
terms from the tipping points, i.e., they are negatively impacted by excluding the
tipping points—for example land-locked countries in Central Asia. The countries
most impacted by the tipping points include the Netherlands, Jamaica, Bahrain,
Sierra Leone, the Gambia, Guyana and Suriname. In the case of the Netherlands,
exclusion of the tipping points raises per capita consumption by 8 percent relative
to the full damage scenario (from a loss of 20% down to a loss of 12%). If these

30N.B. The x-axis differs across the tipping points.
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Figure 7. Tipping points start year
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Figure 8. Change in temperature, °C
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Figure 9. Average change in consumption in 2100 from climate change including tipping
points, percent
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Figure 10. Average change in per capita consumption in 2100 when excluding tipping
points, relative to the full damage scenario, percent

impacts are integrated in a more complex economic model, such as a CGE model,
the impacts could be moderated by other endogenous mechanisms such as changing
patterns of investment, production and trade.

5. Concluding remarks

This paper introduces a new version of a well-documented program, if perhaps
little known among economists, to generate a Latin Hypercube Sample, includ-
ing, if desired assumptions on the co-variability of the uncertain variables. The
new program, coded in C/C++, has been tested exhaustively and also includes
additional functionality compared with the original FORTRAN code, notably ad-
ditional distributions and output options. The LHS utility can be readily embedded
in a workflow, which links a simulation model with a Monte Carlo-style sample of
random deviates with the desired distributional characteristics.

As an example, the LHS utility was coupled with the META 21 integrated as-
sessment model (Dietz et al., 2021). The META 21 model has two distinct features
related to Monte Carlo simulations. The first relates to a large number of uncertain
parameters, for which the LHS utility was utilized to generate a random sample of
10,000 observations—including a priori assumptions for the correlations of a large
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number of the uncertain parameters. The second relates to the uncertain timing of
the onset of the specific tipping points, modeled using a hazard rate and a draw
from a binomial distribution. Obviously, the LHS approach can be used in other
contexts where uncertainty analysis can provide more robust conclusions than a
single point estimate. Monte Carlo-type simulations have been used in the context
of complex and large CGE models (Villoria (2017) and Villoria and Preckel (2017))
albeit with an analysis of only a small subset of the uncertainty of the parameter
space or exogenous shocks. One advantage of the LHS approach over the GQ ap-
proach is that the sampling size is less sensitive to the number of uncertain param-
eters and the desired degree of capturing additional moments of the distribution.

There are many avenues for further exploration. Within the confines of the
META 21 model, there are multiple configurations of the model, which could be
used to unpack in greater depth the tipping points—alternative RCP/SSP combi-
nations, the relative importance of specific tipping points, alternative specifications
for any of the components of the model, etc. Beyond META 21, there are oppor-
tunities to port many of the components—notably the modeling of tipping points
and the damage components, to other IAMs, including CGE models.?! Finally,
generation of random deviates that capture as broadly as possible the degree of
uncertainty in the simulation framework is a necessary, but only first step in uncer-
tainty analysis. Additional analysis is needed to determine the level of influence
of uncertain parameters on key indicators—such as the social cost of carbon. This
additional analysis could provide guidance on where to focus future research to re-
duce uncertainty. Examples of this type of analysis in the context of climate change
include Lobell, Baldos, and Hertel (2013), Butler et al. (2014), Anderson et al. (2014)
and Gillingham et al. (2018).
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Appendix A. The LHS algorithm

The origin of LHS is attributed to the work of McKay (McKay, Beckman, and
Conover, 1979) and Iman and Conover (Iman and Conover, 1982), which is very
nicely described by Helton and Davis (Helton and Davis, 2002). LHS has two com-
ponents. The first is intended to cover as much of the sampling space as possible
by using a simplified version of stratified sampling. The key idea behind this is to
reduce the number of samples—particularly for complex models. In random sam-
pling, each random deviate is selected over the entire range of possible outcomes,
i.e., over the probability range of [0, 1]. The LHS technique divides the [0, 1] range
into n sub-intervals of equal length set to 1/1, where n is the number of deviates be-
ing requested in the sample. In this sense, LHS covers the entire probability range.
For example, for a sample size of 10, the procedure is certain to select a deviate
from the [0,0.1], whereas their is no guarantee of this outcome from pure random
sampling. This simplified stratified sampling is used for each random variable,
and hence LHS is sure to cover the entire range of the multi-variate sample.

The second component is the pairing of the deviates so as to match a targeted
correlation matrix for the random variables. In the absence of a user-specified cor-
relation matrix, the algorithm pairs the deviates to target a zero-correlation matrix,
or as close as possible. The pairing part of the algorithm has several components,
which are described below. Let X be a matrix of the initial random deviates. It is of
dimension n x k, where n is the sample size and k is the number of random vari-
ables. Given the sampling strategy, each column of X is sorted in ascending order.
Let C be the targeted correlation matrix, in the absence of a user-specified list of cor-
relations, it is the identity matrix. It has the dimensions of k X k, is symmetric and
semi-positive definite. Therefore, it can be split using the Cholesky factorization,
which is a lower triangular matrix, say H, with the property C = HH'.32

The second step involves developing an auxiliary matrix of random deviates,
based on the so-called van der Waerden scores. This matrix will be transformed
such that it has the same correlation as the target correlation, and once this is ac-
complished, its rank scores will be used to derive the same rank for the original
sample.

The van der Waerden scores represent the inverse of the normal standard devi-
ation and each column will have the same initial distribution, until fully random-
ized. For example, in the case of n = 10, each column has the following values
until randomized:

32Horridge and Pearson (2011) use a similar technique for their method of systematic sensitivity
analysis using Gaussian quadrature and allowing for imposing a covariance matrix on the uncertain
parameters.
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[ —1.335178
—0.908458
—0.604585
—0.348756
—0.114185

0.114185
0.348756
0.604585
0.908458
1.335178

which is the inverse of the cumulative distribution function of the standard normal
distribution at each cumulative interval defined by 1/11. After randomization,
column by column, the matrix S, may look something like the following:

[ —0.11419 —1.33518 —0.34876 —0.34876  0.90846 |
0.11419  0.34876  0.11419  0.34876 —0.90846
—0.90846  0.60459 —0.90846 —0.60459  0.60459
—1.33518  0.11419  0.60459 —0.90846 —0.34876
0.90846 —0.60459 —1.33518 —0.11419 —0.11419
0.60459 —0.34876  0.34876  0.90846  1.33518
—0.34876  1.33518 —0.60459  1.33518 —1.33518
1.33518 —0.11419  0.90846 —1.33518 —0.60459
0.34876 090846  1.33518  0.11419  0.11419

| —0.60459 —0.90846 —0.11419 0.60459  0.34876

for a sample of 5 random variables. From the matrix S, which to emphasize, has
nothing to do with the sample itself, we can derive its correlation matrix C°* =
Corr(S), and the subsequent Cholesky decomposition (C° = H® (H®)') and the in-
verse of the Cholesky decomposition, call the latter M = (H)"'. The following
step transforms S to S!:

St =S (HM)

where (HM)' is a projection matrix, based on the targeted Cholesky matrix and
the inverse of the Cholesky matrix derived from the van der Waerden scores. S! it
turns out will have the desired correlation matrix, i.e., its correlation matrix will be
C, the targeted correlation matrix. The final step is to assume that the matrix S?, of
transformed van der Waerden scores, has the same rank correlation as the sample
of random deviates. So the algorithm proceeds to calculate the rank order of each
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Table A.1. Example of a sample definition for an EBM model

Name

Distribution Parm 1

Parm 2 Parm 3

xi 1
cCo0
xi_3

f2xco2
t2xco2

Pareto 5.907
ParetoAlt 1.7062
Triangular 0.5
Normal 3.45938
Normal 3.25312

0.11628
53.0

0.5 1.23723
0.43674
0.80031

column of S! and uses that rank order to re-order the cells in each column of X.

The following numerical example will show how the algorithm works in prac-
tice. The example is for a set of five random variables with the attributes in Ta-
ble A.1. This is an example for the energy balance model (EBM) of the META 21
model, which drives the change in temperature component. In addition, the com-
ponents are assumed to be linked to a correlation matrix as below.

xi_1
C.o0
xi_3
f2xco2
t2xco2

xi_1 Cco0
1.00000

—0.04451  1.00000
—0.43716 —0.11978
0.01392 —-0.03966 —0.46228 1.00000
—0.19343 —0.08016

The targeted Cholesky matrix is given by:

xi_1
C_o0
xi_3
f2xco2
t2xco2

xi_1 Co0
1.00000

—0.04451  0.99901
—0.43716 —0.13937
0.01392 —0.03907 —0.51956 0.85343

—0.19343 —0.08886 —0.03540 0.74060 0.63635 |

1.00000

0.06549 0.65122 1.00000 |

0.88852

xi_3  f2xco2  t2xco2 |

xi_3  f2xco2  t2xco2 |

The initial sample of random deviates is given below.>* The rank correlation is
exactly 1 for all pairs of columns as all of the deviates are in ascending order in each
column, and the Spearman correlation matrix is also nearly the identity matrix.

33This will depend on the random sample function and the initial seed.
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xi_1
0.11646
0.11920
0.12332
0.12652
0.12781
0.13417
0.14078
0.14771
0.15354
| 0.17777

C_0
56.14932
59.22047
65.15213
65.61294
77.97449
82.40018
95.69734

108.00303
153.88674
272.65331

xi_3
0.51226
0.55074
0.58688
0.62132
0.67191
0.76344
0.79359
0.87995
0.94936
1.07535

The correlation matrix for S is given by:

CS

f2xco2
2.63749
3.05827
3.13678
3.32291
3.45491
3.52562
3.60265
3.78290
3.89073
4.59178

t2xco2
2.11869
2.28394
2.81773
2.85096
3.10905
3.39424
3.55156
3.91509
3.92973
4.34054

xi_1
1.00000
—0.16433
0.16526
—0.04612
—0.01611

xi_1
C.0
xi_3
f2xco2
t2xco2

Co0

1.00000
0.17962
0.21876
—0.56745

and the corresponding Cholesky matrix is:

HS

xi 1
xi_1 1.00000
Co0 —0.16433
xi_3 0.16526
f2xco2 —0.04612
t2xco2 —0.01611

Cc.o0

0.98641
0.20963
0.21409
—0.57795

from which we derive the inverse matrix:

xi 1
xi_1 1.00000
C.0 0.16660
xi_3 —0.20772
f2xco2 —0.04553
t2xc02 0.17222

C.0

1.01378
—0.22052
—0.29068

0.80205

xi 3

1.00000
—0.21009

—0.03087 —0.03345 1.00000 |

f2xco2

1.00000

xi_3  f2xco2

0.96371

—0.25666 0.94136

0.09644 0.12141 0.80104 |

1.03765
0.28292
—0.16781

f2xco2

1.06229

—0.16101 1.24837 |

We now have all the elements to transform the S matrix:
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t2xco2 1

12xco2 |

2xc02 |
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St =S(HM) =

The correlation matrix of S' matches the targeted correlation matrix for the sample.

xi_1
—0.11419
0.11419
—0.90846
—1.33518
0.90846
0.60459
—0.34876
1.33518
0.34876

| —0.60459

C_0
—1.36616
0.36713
0.50155
—0.04715
—0.50155
—0.27950
1.30972
0.04715
0.96259
—0.99378

xi_3
0.20236
—0.08598
—0.45556
1.38002
—1.61302
0.04923
—0.78274
0.01497
0.69972
0.59100

f2xco2
0.01005
0.23054
—0.45183
—1.12544
0.46806
0.82639
1.13261
—1.35900
—0.42452
0.69313

The rank ordering of each of the columns of S Lis given by:

53

[ xi.1 C0 xi3 f2xco2 t2xco2 ]
5 1 7 5 6
6 7 4 6 4
2 8 3 3 7
1 5 10 2 2
R' = 9 3 1 7 3
8 4 6 9 10
4 10 2 10 5
10 6 5 1 1
7 9 9 4 8
3 2 8 8 9

t2xco2
0.19013
—0.41555
0.24884
—0.66758
—0.49921
1.55553
0.14081
—1.52515
0.40673
0.56545
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Based on R!, we re-arrange the rows of X to yield:

Xl

xi 1

co xi 3

0.12781  56.14932 0.79359
0.13417 95.69734 0.62132
0.11920 108.00303 0.58688

0.11646
0.15354
0.14771
0.12652
0.17777
0.14078
0.12332

7797449 1.07535
65.15213 0.51226
65.61294 0.76344
272.65331 0.55074
82.40018 0.67191
153.88674 0.94936
59.22047 0.87995

f2xco2  t2xco2 ]
3.45491 3.39424
3.52562 2.85096
3.13678 3.55156
3.05827 2.28394
3.60265 2.81773
3.89073 4.34054
4.59178 3.10905
2.63749 2.11869
3.32291 3.91509
3.78290 3.92973 |

which is the final sample. Each column has the same sample distribution as the
corresponding column in X, but the deviates have been arranged so that the corre-
lation matrix is ‘near’ the targeted correlation matrix. In this case, the correlation

matrix is:

xi_1
Cco0
xi 3

xi 1
1.00000
—0.17602

—0.31037

f2xco2 —0.32630
t2xco2 —0.26453

C_0

1.00000

—0.26483  1.00000
0.55056 —0.29066 1.00000
0.00238  0.12102 0.45300 1.00000 |

xi_3  f2xco2  t2xco2 |

The “fit’" is not so good in this example, in part because the sample size is very small.
Using the LHS tool with a sample size of 20,000, we get the following correlation
matrix. Though not exactly the target, it is much closer than that with the sample
size of 10. As explained in Swiler and Wyss (2004), there are limitations on the
targeted correlations.

xi_1
CcoO0
xi_3

xi_1
1.00000
—0.04270
—0.42080

f2xco2  0.01130

12xco2

—0.18610

Cc_0

1.00000

—0.11510  1.00000
—0.04040 —0.44650 1.00000
—0.07590  0.05960 0.63470 1.00000 |
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