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We propose a method for calibrating an industry-level technology to engineering
(bottom-up) estimates with a particular focus on abatement opportunities. As a
demonstration, substitution elasticities across inputs are adjusted in the nested cost
function for the electricity sector to best fit a target marginal abatement cost (MAC)
curve derived from engineering assessments of available technologies. Elasticities are
optimized over an entire relevant range of the MAC, whereas current techniques use
local point estimates under little or no abatement. In the context of fitting to a given
MAC we evaluate alternative nesting structures and find that, while complexity in
nesting improves the fit, even relatively simple nesting structures can reasonably
approximate the target MAC. In our example, focused on the electricity sector, we
find standard elasticities adopted in top-down models moderately overstate abate-
ment costs relative to the engineering targets. In our preferred specification the most
important adjustment is to escalate the substitution elasticity between energy and
value-added inputs. This is consistent with an arqument that the current set of point
estimates fail to properly account for new capital-based technologies. These conclu-
sions, however, are sensitive to our assumption about output-intensity abatement
and consumer price responsiveness, both of which are not delineated in engineering
estimates.
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1. Introduction

In order to translate emissions policy into useful cost estimates we need to have
a reasonable estimate of the marginal abatement cost (MAC) curve as it represents
available technologies. This is particularly challenging in the context of large-scale
models built to analyze carbon policy in a general equilibrium setting. Typically
the MAC curve is an implicit outcome of the assumed energy-demand system com-
bined with fuel-specific carbon coefficients. The complexity of fossil energy’s role
in the economy, as well as the unprecedented nature of a significant carbon-policy
shock, precludes a direct empirical estimation and validation of the implied MAC
using historical data. As an alternative, researchers often specify their models us-
ing a collection of piecemeal evidence from econometric estimates of energy re-
sponses. The problem with these approaches is that the resulting energy-demand
system will imply a MAC that may be inconsistent with engineering assessments of
available abatement technologies. For example, Figure 1 is an engineering assess-
ment of available technologies as published by Bloomberg (2010), and this is differ-
ent from the implicit MAC derived from economic models calibrated to economet-
ric estimates of fuel price responses. If large policy shocks move us significantly
away from the local point of econometric estimation, the information in engineer-

ing assessments is potentially useful.
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Figure 1. MAC curve as published by Bloomberg (2010)

In this paper we pursue a general method for systematically calibrating constant
elasticity of substitution (CES) technologies typically employed in computable gen-
eral equilibrium (CGE) modeling. Our method is an extension of the Kiuila and
Rutherford (2013) proposal for nonlinear MAC fitting. Although our approach is
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presented and should be considered broadly, we demonstrate an application fo-
cused on the electricity energy-demand system such that the implied MAC for
carbon is consistent with bottom-up engineering estimates over a broad range of
abatement opportunities. We develop a fitting procedure in which the parameters
of the energy-demand system are chosen optimally to target the location and shape
of an engineering based MAC. We apply our technique to recalibrate and perform
diagnostics on three nesting structures adopted in the climate-policy literature. We
find that any of these structures can reasonably approximate the engineering MAC
when parameterized with that goal in mind. In our preferred specification we es-
timate considerably more substitution opportunities between energy and other in-
puts relative to the reference elasticities typically adopted in the climate-policy lit-
erature.

In contrast to our proposed method, typical economy-wide (top-down) climate-
policy models include cost functions that are parameterized purely from a local
(zero-carbon-abatement) perspective. An example of the traditional approach, which
focuses on the fuel demand system is given in Bohringer, Carbone, and Rutherford
(2018), who cite the econometric work of Okagawa and Ban (2008) and Steinbuks
and Narayanan (2015) to support their elasticity assumptions. In a model with
an even closer tie to the underlying econometrics, Jorgenson et al. (2013) estimate
translog unit-cost functions directly to calibrate their model. Lagomarsino (2020)
provides a review of the empirical literature with a focus on energy use in nested
CES production functions.! These approaches are valid methods for establishing
local price responses and even important efficiency and productivity trends. In
general, however, they will not imply a MAC that is consistent with bottom-up
studies of available abatement technologies. Our intent is not to suggest that the
econometric calibration techniques are inappropriate, nor that the implied MACs
are invalid. We also do not intend to suggest that the bottom-up MACs are neces-
sarily more reliable.? Our argument is simply that the implied MACs from econo-
metric based calibration are different than the bottom-up MACs, and that it is use-
ful to explore these differences as they contribute to a range of views in policy
debates. We illustrate a method that accommodates the informational content of
the engineering estimates in developing a robust range of potential outcomes.

Some authors have taken a different approach in an effort to consider economy-
wide impacts in general equilibrium while maintaining consistency with detailed

! Lagomarsino (2020) also suggests potential estimation improvements and highlights the
restrictive nature of adopting the CES form. Qian and Wu (2020) also suggest improve-
ments to estimation, highlighting that errors associated with input unit measures can cause
significant bias in the CES estimates. They further illustrate their corrections in the context
of nested specifications.

2 Engineering assessed MAC curves are often derived from abatement technology potentials
without fully considering the practical feasibility of technology adoptions. In this regard
the information in these MACs may not be as reliable as advertised.
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bottom-up models of the energy system. Hybrid models have emerged that link
top-down and bottom-up models. Early hybrid models, for example ETA-Macro
(Manne, 1977), used highly stylized macroeconomic optimization models to repre-
sent the general equilibrium. A number of more recent approaches are reviewed
by Hourcade et al. (2006) in their introduction to a special issue of The Energy
Journal. The most promising and flexible approach seems to follow the mixed-
complementarity formulations of Bohringer (1998) and Bohringer and Rutherford
(2008). These methods accommodate a fully consistent top-down and bottom-up
representation of the activity analysis of specific technologies in an equilibrium
context (wWhere second-best considerations might be made). Yet, a single unified
(top-down) structure remains the preferred tool for timely economy-wide policy
studies, because these avoid the complexity of decomposition methods. A par-
simonious functional representation of many individual bottom-up technologies
follows as an approximate summary of the input requirement sets of distinct activ-
ities (Varian, 1992, p.6-11). In the context of a smooth approximation, substitution
away from fossil energy and into capital and other inputs represents the adoption
of renewables.

We focus on a method for calibrating a smooth top-down representation of the
technology that best approximates a target MAC. Our proposed method is most
closely related to Kiuila and Rutherford (2013). Kiuila and Rutherford (2013) con-
sider fitting an aggregate abatement-cost function to a bottom-up MAC. Their ap-
proach relies on the introduction of a specific factor (abatement capacity) to gen-
erate an upward sloping abatement supply curve. This is likely the preferred ap-
proach when modeling criteria pollutants (e.g., SO, or NOx) where abatement is
linked to end-of-pipe technologies. In the case of carbon abatement, however, there
is a strong physical link between the embodied carbon in fuel use and emissions
(at least up to the point that carbon capture and sequestration dominates as the
abatement technology). Thus carbon abatement is integral to fuel demand. The
representation of fuel demand in most top-down models indicates an implicit MAC
as opposed to the explicit MAC calibrated by Kiuila and Rutherford (2013). In ad-
dition to our new estimates of elasticities, our contribution is to show how the
basic proposal of MAC fitting in Kiuila and Rutherford (2013) can be applied in a
standard top-down setting that includes a full energy-demand system for a given
industry.

We develop a procedure for fitting any well-specified nested CES technology
that includes fuel inputs to an arbitrary MAC curve. The input-share parameters
of the CES technology are locked down to the observed input-output accounts, but
a set of substitution elasticities is chosen to minimize the difference between the
implied MAC and the target MAC. To demonstrate the procedure we adopt three
different nesting structures from the literature with varying degrees of complexity.
We fit the implied MAC for electricity generation in the U.S. to a bottom-up MAC
derived from Bloomberg (2010). We find that each of the nesting structures can be
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parameterized in a way that accurately reflects the target MAC. There appears to
be little gain from adding excessive complexity to the nesting structure. Relating
specific fitted substitution elasticities to power-system responses is most natural
under the nesting suggested by Bohringer, Carbone, and Rutherford (2018) (which
has an intermediate level of complexity). Our demonstrations are over a limited
set of structures, but we expect the tension between parsimony and complexity in
top-down representations to persist across other structures.

In general, the Bloomberg (2010) MAC implies lower abatement costs relative
to the implied top-down MACs at the reference elasticities adopted in the cited
studies for all but the more extensive nesting structure. That is, with two of the
three representations, the fitted elasticities are higher implying more flexibility in
the energy demand system than normally assumed in top-down models. In our
preferred specification, following Bohringer, Carbone, and Rutherford (2018), the
most important adjustment is to escalate the substitution elasticity between energy
and value-added inputs. This is consistent with an argument that the current set of
point estimates used in top-down models fail to properly account for new capital-
based technologies. This finding is sensitive, however, to our assumption about
output-intensity abatement. If we allow some electricity-demand responses to es-
calate costs, the top-down implied MACs indicate lower abatement costs under
some treatments.

The paper is organized as follows. In Section 2 we establish the link between
the top-down representation of technology and the implied MAC. We outline our
estimation strategy in Section 3. In Section 4 we consider the specific nesting struc-
tures and our methods for incorporating the Bloomberg (2010) information as a
target MAC. Results of our fitting exercises are presented in Section 5, and con-
cluding remarks are offered in Section 6.

2. Cost functions and the implied MAC

Consider a general linearly-homogeneous nested CES technology for a given
industry. We represent this technology by the associated unit cost function. The
arguments in the unit cost function are a vector of input prices given by p, but the
functional outcomes also depend on a vector of parameters. The vector of param-
eters include a set of substitution elasticities, which we will denote ¢. Finding an
appropriate vector ¢ is the goal of our calibration exercise, where we assume that
the other parameters of the nested CES technology (share and scale parameters)
are measured accurately in a set of consistent input-output accounts. In its general
form the unit cost function is given by

c(p,o) =min {p'x st y(x,0)=1}, (1)

where x is the vector of inputs and the function y(x, o) is a general CES technology
for the industry. Denoting industry output Y = y(x, o) the cost function is
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C(p,o,Y)=c(p,0)Y, ()

and in a competitive equilibrium the price of output, p,, equals marginal cost [p, =
c(p, o)]. Let us also partition the vector of elasticities into a set to be estimated, ¢,
and an exogenously-specified set, &. The reason for partitioning is that some of the
elasticities might be informed from information that is independent of the MAC
calibration.

A convenient way of introducing carbon emissions is to specify a set of Leontief
nests for each fuel, indexed by f € F = {COL, GAS, OIL}, where the fuel input
(coal, natural gas, and refined petroleum) is combined with an emissions allowance
at a maintained zero substitution rate (7 = 0 Vf € F). Denote the allowance price
for carbon emissions pg and the fuel price ps. The gross fuel-input costs (denoted
with an uppercase Pf) is given by the Leontief unit cost function

Pr(pfs, pE) = P+ YFPES 3)

where 7 is a fuel-specific carbon coefficient.> Marginal abatement cost in this setup
is given by pg, which might be zero under no abatement. Emissions from the sector
are a function of the parameters, prices, and output: E(p, &, ,Y). This function is
identified by applying Shephard’s Lemma:

A o oc(p,o,0) c(p,0,0)
E(p,0,0,Y) =Y =5 "= = E’Yf ap, 4)

Where the right-hand term applies the chain rule to show that emissions are simply
given by the sum of fuel inputs weighted by their respective carbon coefficients.

Paired combinations of pr and E(p, ¢, ¢,Y) indicate the implied MAC. This re-
lationship is conditional on a full set of prices, the elasticities, and a given level of
output. For exposition, partition the input price vector into p, which includes all
prices except pg. Thus emissions are given by E(p, pg, &, 7,Y), and abatement is
given by the difference E(p,0,6,0,Y) — E(p, pe,6,7,Y). This draws a clear link
between the calibration of the cost function and the implied MAC. Notice that the
implied MAC is conditional on fixed input prices (other than carbon) and a fixed
level of output. The implied MAC is a partial equilibrium concept, but this might
be desirable to the extent that the construction of the target (bottom-up) MAC ig-
nores general-equilibrium responses.

3 Firms optimize such that marginal abatement cost equals the market price at which they
can buy or sell allowances on the open market. When freely allocated emission allowances,
the firm still faces the opportunity cost of selling those allowances when it emits. Thus
the firm’s technology, in terms of the non-negative allowance price is unaffected by the
allocation scheme.
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Representing the technology with the unit-cost function is convenient for expo-
sition but in application the ¢(p, o) that represents a typical nesting structure will
be complex. We can add variables to represent the sub-activity level at a node and
the unit cost at that node to simplify the formulation. For example, consider an as-
sumed structure that includes a separable energy nest that is a child to the top-level
nest that combines all other inputs. We can represent the unit cost of the energy
composite as a function of the gross fuel costs plus the cost of electricity. Let us de-
note the composite energy input quantity ENG, which has a price (marginal cost)
of PENG- Adding these two endogenous variables to the system requires the addi-
tion of two equilibrium conditions. First, the supply of ENG must equal demand
from the parent activity:

ENG = y 24P, 5)
IPENG
and second, the unit cost will be the minimum marginal cost of supplying a unit of
ENG:

PENG = CENG (Peoal: Poils Pgas: Pele)- (6)
Emissions are still derived by applying Shephard’s Lemma, but now it is applied to
the cost function for ENG, which is simply the product of the endogenous variable
ENG, given by equation (5) and its unit cost: ENG - CgnG(+)- Arriving at equation
(4) will then include a chain of node-level demands. An arbitrary nesting structure
can be represented in this way, by adding two endogenous variables (a quantity
and a price) at each node. For exposition, consider collecting all of these endoge-
nous variables in the vector x, and collect all of the equilibrium conditions into the
vector-valued function

F(x,p,0) =0, )

which implicitly maps from the set of exogenous input prices and elasticities into
the endogenous quantities and composite prices, where the set of composite prices
includes the fuel prices gross of the emissions charge.

In our application we consider two extensions to the basic partial equilibrium
system represented by F(x, p, ) = 0. First, we add an internally consistent input-
price adjustment for the industry’s own use of its output. In a typical set of input-
output accounts a member of p will be p,. Abatement escalates the unit cost of
producing Y, and this should be reflected in the price that the industry pays for it
own inputs. Second, we might also consider abatement that results from output
reductions. This allows us to consider that engineering estimates of MACs might
implicitly include the output-intensity abatement channel. In order to fit the CES
abatement cost curve to estimates that include output-intensity abatement we need
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to have a measure of output at each point on the MAC. Adding structure to this
notion we specify output demand such that Y changes as p, = c(p, 0) is affected
by changes in pg. We assume that output is determined by a constant-elasticity
demand function;

Y = zx]a;7 (8)

where 7 is the demand elasticity and « is set such that we replicate benchmark
output at benchmark marginal cost. For the central analysis in this paper we as-
sume 17 = 0, but one could adopt alternative perspectives. For example, in a set
of sensitivity runs we set 7 = 0.5 considering that the bottom-up MAC implic-
itly considers the fact that the quantity demanded falls with higher output prices.*
These sensitivity runs indicate that the results are, in fact, highly dependent on
our assumption about the potential inclusion of implicit demand responses in the
engineering MACs.

3. Nonlinear estimation strategy

With the system F(x, p, c) = 0 and output levels (Y) well-specified for changes
in pg we can proceed to estimate a set of ¢ that fit the implied MAC to a target. Let
E indicate emissions from the fitted system (the implied MAC), which depends on
choices over ¢. Now consider a target MAC, usually derived by a rank ordering of
engineering estimates of available abatement technologies, which maps allowance
prices onto abatement levels over an empirical domain. From this target MAC we
can generate a set of paired observations for the vectors E° and p. The estima-
tion strategy is to minimize the deviations between the E° and E by choosing an
appropriate set of ¢. Setting up the nonlinear least squares problem we have:

mingg, ||E-E°|]?
subject to: F(x,p,0) =0
and Y =ap, T
where, in general, some subset of elasticities (¢) and input prices (p) are assumed

fixed. The mathematical program, thus, minimizes the sum of squared distances
from endogenous emissions to target emissions subject to the nested technology

4 The system defining the structural model could be generalized to includes additional
flexibility in terms of incorporating other potential considerations in construction of the
bottom-up MAC. If, for example, the engineering estimates account for the increased cost
of capital as capital is substituted for fuel, this is easily accommodated by an added capital
supply schedule. We do not include these extensions because we do not think these is-
sues are generally considered in the engineering assessments of the available technologies.
Implicitly, by holding their prices fixed, we are assuming a perfectly elastic supply of all
inputs other than emissions allowances and the industry’s own intermediate inputs.
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and output demand assumptions. The nonlinear least squares problem is formu-
lated in the GAMS Development Corporation (2021) language and solved using
the GAMS/NLPEC solver.” In the context of the econometric review of nested CES
estimation by Lagomarsino (2020), our method spans their definition of the direct
and indirect approaches to estimation. It is direct in that we estimate the full ex-
tensive form of the nonlinear system, and it is indirect in that we estimate the cost
function which includes the optimizing behavior of the firms. We do not, how-
ever, employ an ad-hoc nonlinear optimization algorithm. We use a generalized
off-the-shelf algorithm available through the GAMS software.

4. Empirical nesting structures and the target MAC

To illustrate our fitting method we adopt three different nested CES structures
previously used in the analysis of climate and energy policy. We apply our method
to the electricity generation sector of the U.S. economy. We choose electricity gen-
eration because of its prominence in emissions generation and because there are
good bottom-up engineering assessments of potential abatement technologies. We
consider multiple top-down structures that are increasing in complexity to explore
their respective flexibility in accurately reflecting the target MAC.® The three struc-
tures and the corresponding models are as follows

¢ BASIC from an early version of the G-Cubed Model (McKibbin and Wilcoxen,
1999).

¢ STANDARD from a GTAPinGAMS climate-policy application (Bohringer,
Carbone, and Rutherford, 2018).

¢ EXTENDED from the WorldScan model (Lejour et al., 2006).

Starting with the least complex BASIC nesting, illustrated in Figure 2, we have
an output nest at the top that combines Capital, Labor, Energy, and Materials (often
denoted as KLEM) at a constant elasticity of substitution equal to ok 1 r,m, Where
a comma in the subscript indicates separable inputs in the nest. The inputs of
energy and materials, however, are CES composites. The energy composite is a
CES aggregation of the fuels plus electricity, and the materials composite is a CES
aggregation of all other intermediate inputs. The elasticities in these subnests are
or and oy, respectively.

> As formulated for computation, the model is solved as a Mathematical Program with
Equilibrium Constraints (MPEC). For exposition, and because the solution is an interior
point, we present the system F(x, p,0) as a set of equality conditions. There is a logical
extension of our system that binds prices and demand quantities to be weakly positive in
a set of complementary slack conditions. For details see Rutherford (1995). The code is
publicly available: https://github.com /maxxb77 /MAC.

® We only consider separable nested CES functions, which dominate the climate and energy
policy literature. For a nested CES cost function to be a true flexible functional form non-
separabilities would be added (Perroni and Rutherford, 1995).
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Figure 2. BASIC nesting structure (McKibbin and Wilcoxen, 1999)
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Figure 3. STANDARD nesting structure (Bohringer, Carbone, and Rutherford, 2018)

Under our STANDARD nesting structure, illustrated in Figure 3, additional
complexity is added. A value-added composite of capital and labor trades off with
the energy composite directly at a CES of ok g. This composite then combines with
materials at the top level at a CES of oxrg,pm. Additional complexity is again added
under the EXTENDED nesting adopted in the WorldScan model (Figure 4). Under
the EXTENDED structure a Coal and Gas-Oil nest is added to the energy nest,
which allows for a different elasticity of substitution between the various fuels. The
code for the partial equilibrium models and calibration exercises for each nesting
structure is available” but requires the GTAP9 database.

The outlined nesting structures are calibrated to the U.S. electricity-generation

7 See: https://github.com/maxxb77 /MAC


https://github.com/maxxb77/MAC

Journal of Global Economic Analysis, Volume 8 (2023), No. 1, pp. 55-76.

ELE
KLE M
6% h ﬁ
KL E
OK L 7A< AGE
K L ELE CGO
)Q@
coL GO
/\ 7<><’C0
col CO3 o 7\3\ ;L\

gas COxgs Oil CO2i1
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factor and intermediate input demands in the GTAPinGAMS database used in the
paper by Balistreri, Bohringer, and Rutherford (2018). These data are aggregated
from the original GTAP9 data (Aguiar, Narayanan, and McDougall, 2016). The
GTAP data establish the CES scale and distribution parameters. GTAP also pro-
vides a set of default response (elasticity) parameters, but we do not use these.
Rather we adopt those elasticities assumed by the authors associated with each
nesting structure.

The target MAC for the U.S. electricity sector is derived from Bloomberg (2010).
We use Bloomberg’s compiled assessment of the 2030 U.S. MAC curve with current
policies. We filter out those technologies that are specific to electricity generation
to generate the target MAC. The technologies that we consider are presented in
the derived MAC for electricity generation, Figure 5. Typical of a bottom-up as-
sessment of available technologies notice that there are some technologies that are
measured to have negative or zero cost. This is inconsistent with optimization
in the benchmark. To reconcile the target with the structural model we employ
alternative scaling methods following Kiuila and Rutherford (2013). The scaling
methods are as follows:

* A shifts the MAC upward by the absolute value of the minimum price,
* B treats negative costs as zero but retains their abatement quantities,
¢ Cremoves all negative costs and their associated abatement quantities.
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Figure 5. Filtered abatement cost curve, original data from Bloomberg (2010)

The bottom-up target MAC represents a step function as each additional abate-
ment technology, at a higher cost, is employed. We select the midpoint of the step
as the cost associated with abatement as each new technology is adopted. The con-
structed target MACs are presented in Figure 6. Specific measures of abatement
costs are taken as digital measurements off of the Bloomberg (2010) graphics.

5. Results

We solve the nonlinear least squares problem presented in Section 3 where the
system F(x,p,0) = 0 is specified to represent the proposed nesting structures.
Observations on the fitted and target levels of abatement are made by applying
alternative CO, prices (given by the price points in Figure 6). Initially we assume
no electricity-output demand response (7 = 0). Table 1 shows the reference and
optimized elasticities across the different nesting structures and scaling methods
for the Bloomberg MAC. The reference elasticities are taken from literature appli-
cations of the corresponding nesting structure. In general we find that the reference
elasticities are somewhat lower than the optimized elasticities with the BASIC and
STANDARD nesting structures. The opposite is true, however, in the EXTENDED
nesting structure. This indicates that the top-down applications assume higher im-
plied abatement costs relative to the bottom-up target, a point generally illustrated
in Figure 7 where the dotted curves are the implied CES MACs at the reference
elasticities (‘Reference’) and the dashed curves are best fit (‘Fitted”) curves. Figure
8 focuses on scaling method B to illustrate the reference and fitted curves.

The different nesting structures indicate elasticity escalation at different nodes.
For example, in the BASIC nesting structure elasticity expansion is at the KLEM
level, but in the STANDARD nesting structure the elasticities are expanded at the
substitution between value added (KL) and the energy nest. In the case of the BA-
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Table 1. Reference (as assumed in the respective study) and

fitted elasticities across structures and scaling methods

BASIC Scaling Method

Reference A B C
OF 020 051 071 0.55
OK,L,E,M 076 430 496 4.63
STANDARD

Reference A B C
OF 0.50 051 0.71 0.55
OKL,E 0.26 448 526 492
OKLE,M 0.10 0.00 0.04 0.02
EXTENDED

Reference A B C
0co 0.50 4.08 4.65 4.49
0c,Go 0.70 0.32 048 0.35
OE 0.25 0.00 0.00 0.00
OKL,E 0.50 0.00 0.09 0.00
OKLE,M 0.00 279 3.15 0.05
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Table 2. Minimized objective (sum of squared errors)
across structures and scaling methods

A B C
BASIC 0.4841 0.1169 0.0659
STANDARD 0.4838 0.1168 0.0657
EXTENDED 0.4685 0.1078 0.0632

SIC structure, however, the only parameter available to increase is ok 1 rm, and
when this increases the rate of substitution with the materials composite automat-
ically increases. To the degree that we think energy substitution is primarily into
capital, as opposed to materials, the BASIC structure does not have enough flexi-
bility.

With the EXTENDED nesting structure we also see significant differences in
where the technology becomes more responsive. Unlike the BASIC and STAN-
DARD structures, the location of elasticity expansion under the EXTENDED struc-
ture is sensitive to the particular MAC scaling method. With scaling methods A
and B we see that the bottom and top nests of the EXTENDED nesting structure
(cco and oxrg,m) increase dramatically whereas all the nests in-between become
more inelastic. With scaling method C, however, we see that only the bottom nest
elasticity increases whereas all others decrease.

We see trade offs between the level of parsimony in the nesting structure and
the actual technology in the power sector. To the extent that we focus on top-down
representations this tension is not resolved by our fitting procedure. Regardless of
how well we may fit the overall MAC it is not clear that we pick the correct margins
for adjusting the CES technology. That said, accurately representing the overall
MAC might be quite useful in communicating how different structures generate
different outcomes. It is useful in this context to measure the gains from complexity.
Table 2 reports the level of the least-squares objectives across the estimations. In
general, there seems to be small gains, in terms of fit, to added complexity. In these
estimations we are optimizing over a set of elasticities. As a lesson, freeing the
full set of elasticities (in the structures that we consider) results in some elasticities
being adjusted such that the target MAC is reasonably approximated. It remains a
judgment call as to whether the correct elasticities are adjusted.

Looking at Table 2 we see that the non-convexities implied by scaling method A
make it significantly more difficult for the CES technology to represent the target
MAC. Recall that scaling method A shifts the target MAC up by an amount equal
to the most negative-cost technology. This is apparent in the first column of graphs
in Figure 7. Under scaling methods B and C, where the negative-cost technologies
are either set to zero or ignored, the MAC is more convex and the overall CES fit
is better. Figure 8 focuses on scaling method B to illustrate the reference and fitted
curves. Again the key take away is that the optimized curves are almost identical,
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Table 3. Component contributions of elasticities to the overall fit
(STANDARD nesting structure with scaling method B)

Ratio to

Elasticity ObjVal Optimal

Reference: g=0.50 5'KL,E=O-26 5'KLE,M=O-1O 0.52 4.464
0g=0.74 0x; p=0.26  FxrLEg,m=0.10 0.12 1.058

0g=0.50 0xr g >500 xrE,m=0.10 0.42 3.576

0e=0.50 0x1,=0.26 @'KLE,M=40~03 0.52 4.464

0p=0.71 0x1 r=5.25 0xipm=0.10 012 1.002

0e=0.74 (7KL,E:0-26 &KLE,M:12-13 0.12 1.058

0r=0.50 (ATKL,E >500 @'KLE,MZO.OO 0.42 3.576

Optimal: 5’]5:0.71 &KL,E:5-26 &KLE,M:0-04 0.12 1.000

although in Table 2 we do see that more complexity does offer a slightly better fit
(in terms of a smaller sum of squared errors).

In Table 3 we report a set of diagnostics on the component contributions of each
estimated parameter. We again focus on scaling method B and consider sequen-
tially freeing up different combinations of elasticities while other elasticities are
held at their reference values. In a given row of the table an elasticity embellished
with a ‘bar’ is held at its reference value, while an elasticity embellished with a “hat’
is optimized and the optimized value of the elasticity is in boldface type.® Notice
that significant improvement in fit is available by simply freeing up the energy
elasticity (cg) which allows for fuel substitution as well as some electricity substi-
tution. This is not very appealing, however, relative to cases where both ¢r and
oxL,E are optimized because this includes the opportunity for energy to substitute
more freely with value added inputs. In fact, with all elasticities optimized we see
that the key adjustment is in the substitution elasticity between energy and value-
added inputs, with ok g 20 times higher than in the reference case and only minor
adjustments in the other elasticities. Under this specification the bottom-up MAC
indicates substantially more flexibility in terms of substituting new capital-based
technologies for fuels.

We now turn to a set of fitting exercises where we consider elastic electricity de-
mand. In particular we set 7 = 0.5. This shows that our results are sensitive to the
demand-function settings in equation (8). There are two main impacts of increasing
the demand elasticity. First, our ability to fit the target MAC is improved because
output-intensity based abatement is available. Second, relative to the reference
elasticities the fitted elasticities imply very little input flexibility in the production
structure. The fitted optimal elasticities across nesting structures and scaling meth-

8 Note that the lower bound for estimated elasticities is zero and the upper bound is 500,
which essentially implies perfect substitutes at the respective nesting node.
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Table 4. Reference and fitted elasticity values
by nesting structure and MAC scaling method with elastic demand (y = 0.5)

BASIC Scaling Method

Reference A B C
OE 0.20 0.06 0.39 0.19
OK,LE,M 0.76 0.00 0.00 0.00
STANDARD

Reference A B C
OE 0.50 0.08 0.40 0.20
OKL,E 0.26 0.00 0.00 0.00
OKLE,M 0.10 0.10 0.1 0.10
EXTENDED

Reference A B C
0Go 050 2.82 512 499
0c,co 0.70 0.00 0.22 0.04
O 0.25 0.00 0.00 0.00
OKLE 0.50 0.00 0.36 0.00
OKLE,M 0.00 0.01 0.01 o0.01

ods are presented in Table 4. With elastic demand we find that under the reference
substitution elasticities the implied top-down MAC greatly understates abatement
costs relative to the target with the BASIC and STANDARD nesting structures.
This is opposite of the case under inelastic demand (and this is at a modest de-
mand elasticity of 0.5). While fit is improved, the fitted elasticities are unstable due
to the reliance on output-intensity abatement. In each of the nesting structures we
see that the optimal fit is with very low input substitution elasticities. This drives
the technology to escalated abatement costs that are dominated by output reduc-
tions.

Figure 9 shows the reference and fitted MACs when we have elastic electric-
ity demand. In terms of overall fit we do not see a great deal of variation across
structures, again because of the heavy reliance on output reductions for abatement.
The accuracy of the fitted curves to the MAC data does not vary greatly by nesting
structure, regardless of MAC scaling method. Table 5 presents the values of the
objective functions (sum of squared errors) under the different treatments. Com-
paring these values to those presented in Table 2 we see significant improvement
in the overall fit. Our read, however, is that there is less useful information in the
estimates of substitution elasticities. First, most abatement is through the output
channel. Second, it is not clear to us that the engineering assessments of abatement
technologies actually considers output changes. So, although output reductions
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are a real economic response, it may not be appropriate to consider these when
targeting a MAC derived from engineering assessments.
Table 5. Minimized objective (sum of squared errors) across
structures and scaling methods with elastic demand (7 = 0.5)
A B C
BASIC 0.2791 0.0988 0.0300
STANDARD 0.2085 0.0947 0.0219
EXTENDED 0.1940 0.0942 0.0172

6. Conclusion

This paper demonstrates a method by which bottom-up engineering assess-
ments of abatement technologies can be incorporated into a standard CES repre-
sentation. This method is useful for reconciling the MACs implied in a standard
top-down model with beliefs about future technologies. Contemporary methods
for calibrating nested CES technologies might be quite appropriate in their exami-
nation of fuel demand responses to variation in prices. The danger, however, is that
significant carbon abatement might pull us considerably away from historical price
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changes. Furthermore, price variability as observed in the data is not the same as a
simultaneous escalation of fuel prices based on their carbon coefficients. The tools
developed here have significant potential as an alternative calibration method.

While we find the method sound it is only useful to the extent that we have
an accurate target MAC that is well understood. We find it challenging to under-
stand and adopt an ‘off-the-shelf” MAC as published. Negative abatement costs
are generally inconsistent with the behavioral assumptions built into any equilib-
rium model. We dealt with negative abatement costs with various scaling methods
as proposed by Kiuila and Rutherford (2013). This is not entirely satisfying, how-
ever, because it would be better to know how these negative costs were estimated
and how they might be reconciled with economic behavior. We also find ourselves
questioning the specific input-pricing and output demand conditions under which
a given target MAC is appropriate. Our suspicion is that these issues were simply
not considered in the development of the target MAC. This lead to our central as-
sumption that demand is perfectly inelastic and input prices are fixed. Given their
application in policy debates it is troubling that bottom-up MAC assessments do
not clearly indicate any stance on consumer responses to the indicated prices. Our
application highlights the importance of these implicit assumptions that change
our interpretation of the information content of the MAC. We show that the CES
calibration is critically sensitive to our assumption about potential output demand
responses as they are considered in the engineering estimates of abatement oppor-
tunities.

We note that it is also important to be cautious about our assertion of validity
of the economic structure. The core assumptions that affect the final elasticity es-
timates are embedded in the system (7) and (8) along with the specified nesting
structures outlined in figures 2, 3, and 4. Our purpose is to illustrate an estimation
technique, not to test or validate the core assumptions of any particular structure.
Following the advice of Leamer and Levinsohn (1995, p.1341) we estimate—we do
not test. The CES structure embedded in (7) with output demand given by (8) is
almost certainly falsifiable provided data and some level of econometric scrutiny.
The CES system is chosen in computational simulation models for a couple of rea-
sons. First, under positive initial input shares and substitution elasticities it main-
tains regularity over the entire price simplex, which can be critical for efficient and
reliable computation (Perroni and Rutherford, 1998). Second, it includes a rela-
tively small set of parameters making calibration relatively transparent. For our
purpose it is most important that we provide an example of our method in the
context of those structures that are actually used in the consideration of abatement
policy. We feel it is useful to fit the implied MACs from established models to a
published engineering assessment of the MAC regardless of the assessed validity
of the structure. This might seem an odd stance from an econometric perspec-
tive, but the advice of Leamer and Levinsohn (1995) is that falsifiable theories can
nonetheless be empirically informative.

73



Journal of Global Economic Analysis, Volume 8 (2023), No. 1, pp. 55-76.

Under our central assumptions we find that the best fit elasticities were gener-
ally larger than those adopted in general-equilibrium models. In particular, the ev-
idence suggests that the bottom-up technologies imply more substitution between
energy (fuel inputs) and value added. This is not surprising given that bottom-
up MAC:s are specifically focused on new (out of sample) technologies, where as
the typical CES calibration relies on local (in sample) responses to changes in fuel
prices. While there is nothing wrong with using evidence on local price changes
to inform the CES calibration, there is potentially other information available that
could yield more accurate responses to large policy changes; or, at a minimum, ac-
commodate a range of general-equilibrium results that include the positions held
by the engineering community. Our contribution is to develop and illustrate a
method by which a CES technology can be calibrated to any target MAC over an
entire relevant range of potential abatement opportunities.

One final note of caution relates to the age of the information we use to generate
our comparisons and draw conclusions. Our target MAC is from 2010, and we use
input-share data from GTAP 9 (with a base year of 2011). This gives us a roughly
comparable time frames for our estimation, but considerable advances in renew-
able energy over the past decade might significantly affect both the target and the
structure under which we estimate the elasticities.
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